435
Views
1
CrossRef citations to date
0
Altmetric
Review

Psoriasis: a focus on upcoming oral formulations

ORCID Icon, ORCID Icon & ORCID Icon
Pages 583-600 | Received 11 Jun 2023, Accepted 26 Jul 2023, Published online: 01 Aug 2023

References

  • Parisi R, Symmons DPM, Griffiths CEM, et al. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J Invest Dermatol. 2013;133(2):377–385. doi: 10.1038/jid.2012.339
  • Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. Journal Of The European Academy Of Dermatology And Venereology Blackwell Publishing Ltd. 2017;31(2):205–212. doi: 10.1111/jdv.13854
  • Boehncke W-H, Schön MP. Psoriasis. Lancet. 2015;386(9997):983–994. doi: 10.1016/S0140-6736(14)61909-7
  • Ben Abdallah H, Johansen C, Iversen L. Key signaling pathways in psoriasis: recent insights from antipsoriatic therapeutics. Psoriasis: Targets And Therapy. 2021;11:83–97. doi: 10.2147/PTT.S294173
  • Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA - Journal Of The American Medical Association American Medical Association. 2020;323(19):1945–1960. doi: 10.1001/jama.2020.4006
  • Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci MDPI AG. 2019;20(6):1475. doi: 10.3390/ijms20061475
  • Alcusky M, Lee S, Lau G, et al. Dermatologist and patient preferences in choosing treatments for moderate to severe psoriasis. Dermatol Ther (Heidelb). 2017;7(4):463–483. doi: 10.1007/s13555-017-0205-2
  • Komine M, Kim H, Yi J, et al. A discrete choice experiment on oral and injection treatment preferences among moderate-to-severe psoriasis patients in Japan. J Dermatol. 2023;50(6):766–777. doi: 10.1111/1346-8138.16746
  • Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32(1):227–255. doi: 10.1146/annurev-immunol-032713-120225
  • Ni X, Lai Y. Crosstalk between keratinocytes and immune cells in inflammatory skin diseases. Exploration Of Immunology. 2021;418–431. doi: 10.37349/ei.2021.00028
  • Nestle FO, Kaplan DH, Barker J. Psoriasis. Barker J Psoriasis N Engl J Med. 2009;361(5):496–509. doi: 10.1056/NEJMra0804595
  • Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol. 2017;140(3):645–653. doi: 10.1016/j.jaci.2017.07.004
  • Ganguly D, Chamilos G, Lande R, et al. Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–1994. doi: 10.1084/jem.20090480
  • Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–569. doi: 10.1038/nature06116
  • Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–1141. doi: 10.1038/ni1261
  • Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–1132. doi: 10.1038/ni1254
  • Nakajima A, Matsuki T, Komine M, et al. TNF, but not IL-6 and IL-17, is crucial for the development of T cell-independent psoriasis-like dermatitis in Il1rn −/− mice. J Immunol. 2010;185(3):1887–1893. doi: 10.4049/jimmunol.1001227
  • Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5(1):5621. doi: 10.1038/ncomms6621
  • Aggarwal S, Ghilardi N, Xie M-H, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278(3):1910–1914. doi: 10.1074/jbc.M207577200
  • Tait Wojno ED, Hunter CA, Stumhofer JS. The Immunobiology of the interleukin-12 family: room for discovery. Immunity. 2019;50(4):851–870. doi: 10.1016/j.immuni.2019.03.011
  • Cai Y, Shen X, Ding C, et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity. 2011;35(4):596–610. doi: 10.1016/j.immuni.2011.08.001
  • Bielecki P, Riesenfeld SJ, Hütter J-C, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592(7852):128–132. doi: 10.1038/s41586-021-03188-w
  • Matos TR, O’Malley JT, Lowry EL, et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17–producing αβ T cell clones. J Clin Invest. 2017;127(11):4031–4041. doi: 10.1172/JCI93396
  • Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol. 2018;55(3):379–390. doi: 10.1007/s12016-018-8702-3
  • McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892–906. doi: 10.1016/j.immuni.2019.03.021
  • Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 2011;131(3):677–687. doi: 10.1038/jid.2010.340
  • Garcia-Melendo C, Cubiró X, Puig L. Janus kinase inhibitors in dermatology: part 1 — general considerations and applications in Vitiligo and Alopecia Areata. Actas Dermo-Sifiliográficas (English edition). Actas Dermo-Sifiliográficas. 2021;112(6):503–515. doi: 10.1016/j.adengl.2021.03.012
  • Garcia-Melendo C, Cubiró X, Puig L, et al. Inhibidores de JAK: usos en dermatología. Parte 2: aplicaciones en psoriasis, dermatitis atópica y otras dermatosis. Actas Dermosifiliogr. 2021;112(7):586–600. doi: 10.1016/j.ad.2020.12.006
  • Nogueira M, Puig L, Torres T. JAK inhibitors for treatment of psoriasis: focus on selective TYK2 inhibitors. Drugs. 2020;80(4):341–352. doi: 10.1007/s40265-020-01261-8
  • Villarino AV, Kanno Y, Ferdinand JR, et al. Mechanisms of jak/STAT signaling in immunity and disease. J Immunol. 2015;194:21–27. doi: 10.4049/jimmunol.1401867
  • O’Shea JJ, Schwartz DM, Villarino AV, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66(1):311–328. doi: 10.1146/annurev-med-051113-024537
  • Shang L, Cao J, Zhao S, et al. TYK2 in immune responses and treatment of psoriasis. J inflamm res. Dove Medical Press Ltd; 2022. p. 5373–5385. doi: 10.2147/JIR.S380686
  • Kreins AY, Ciancanelli MJ, Okada S, et al. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med. 2015;212(10):1641–1662. doi: 10.1084/jem.20140280
  • Krueger JG, McInnes IB, Blauvelt A. Tyrosine kinase 2 and Janus kinase‒signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. J Am Acad Dermatol Elsevier Inc. 2022;86(1):148–157. doi: 10.1016/j.jaad.2021.06.869
  • Velarquez L, Fellous M, Stark GF, et al. A protein tyrosine kinase in the interferon αβ signaling pathway. Cell. 1992;70(2):313–322. doi: 10.1016/0092-8674(92)90105-L
  • Kvist-Hansen A, Hansen PR, Skov L. Systemic treatment of psoriasis with JAK Inhibitors: A review. Dermatol Ther (Heidelb). 2020;10(1):29–42. Internet Available from http://www.ncbi.nlm.nih.gov/pubmed/31893355. doi: 10.1007/s13555-019-00347-w
  • Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov Nature Publishing Group. 2017;16(12):843–862. doi: 10.1038/nrd.2017.201
  • Ghoreschi K, Augustin M, Baraliakos X, et al. JDDG - Journal of the German Society of Dermatology. TYK2 inhibition and its potential in the treatment of chronic inflammatory immune diseases. John Wiley and Sons Inc; 2021. p. 1409–1420.
  • Shawky AM, Almalki FA, Abdalla AN, et al. A comprehensive overview of globally approved JAK inhibitors. Pharmaceutics MDPI. 2022;14(5):1001. doi: 10.3390/pharmaceutics14051001
  • Works MG, Yin F, Yin CC, et al. Inhibition of TYK2 and JAK1 Ameliorates Imiquimod-induced psoriasis-like dermatitis by inhibiting IL-22 and the IL-23/IL-17 Axis. J Immunol. 2014;193(7):3278–3287. doi: 10.4049/jimmunol.1400205
  • Tian F, Chen Z, Xu T. Efficacy and safety of tofacitinib for the treatment of chronic plaque psoriasis: a systematic review and meta-analysis. J Int Med Res SAGE Publications Ltd. 2019;47(6):2342–2350. doi: 10.1177/0300060519847414
  • Marushchak O, Yakubov R, Yakubov R, et al. Review on novel oral therapies for psoriasis. J Clin Aesthet Dermatol. 2021;14:55–63. Internet Available from: http://www.ncbi.nlm.nih.gov/pubmed/35096256
  • Papp KA, Menter A, Strober B, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: A phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–677. doi: 10.1111/j.1365-2133.2012.11168.x
  • Bachelez H, Van De Kerkhof PCM, Strohal R, et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: A phase 3 randomised non-inferiority trial. Lancet. 2015;386(9993):552–561. doi: 10.1016/S0140-6736(14)62113-9
  • Papp KA, Menter MA, Abe M, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: results from two randomized, placebo-controlled, phase III trials. Br J Dermatol. 2015;173(4):949–961. doi: 10.1111/bjd.14018
  • Papp KA, Krueger JG, Feldman SR, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: long-term efficacy and safety results from 2 randomized phase-III studies and 1 open-label long-term extension study. J Am Acad Dermatol. 2016;74(5):841–850. doi: 10.1016/j.jaad.2016.01.013
  • Merola JF, Elewski B, Tatulych S, et al. Efficacy of tofacitinib for the treatment of nail psoriasis: two 52-week, randomized, controlled phase 3 studies in patients with moderate-to-severe plaque psoriasis. J Am Acad Dermatol. 2017;77(1):79–87.e1. doi: 10.1016/j.jaad.2017.01.053
  • Feldman SR, Thaçi D, Gooderham M, et al. Tofacitinib improves pruritus and health-related quality of life up to 52 weeks: results from 2 randomized phase III trials in patients with moderate to severe plaque psoriasis. J Am Acad Dermatol. 2016;75(6):1162–1170.e3. doi: 10.1016/j.jaad.2016.07.040
  • Reuters Staff. FDA declines to expand approval of Pfizer arthritis drug [Internet]. OCTOBER 14, 2015. 2015 [cited 2023 May 24]. Available from: https://www.reuters.com/article/pfizer-psoriasis-fda-idUSL1N12E2OW20151014.
  • Ito M, Yamazaki S, Yamagami K, et al. A novel JAK inhibitor, peficitinib, demonstrates potent efficacy in a rat adjuvant-induced arthritis model. J Pharmacol Sci. 2017;133(1):25–33. doi: 10.1016/j.jphs.2016.12.001
  • Papp K, Pariser D, Catlin M, et al. A phase 2a randomized, double-blind, placebo-controlled, sequential dose-escalation study to evaluate the efficacy and safety of ASP015K, a novel Janus kinase inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2015;173(3):767–776. doi: 10.1111/bjd.13745
  • Ludbrook VJ, Hicks KJ, Hanrott KE, et al. Investigation of selective JAK1 inhibitor GSK2586184 for the treatment of psoriasis in a randomized placebo-controlled phase IIa study. Br J Dermatol. 2016;174(5):985–995. doi: 10.1111/bjd.14399
  • Pfizer. U.S. FDA approves Pfizer’s CIBINQO® (abrocitinib) for adults with moderate-to-severe atopic dermatitis. Pfizer. 2022.
  • Peeva E, Hodge MR, Kieras E, et al. Evaluation of a Janus kinase 1 inhibitor, PF-04965842, in healthy subjects: A phase 1, randomized, placebo-controlled, dose-escalation study. Br J Clin Pharmacol. 2018;84(8):1776–1788. doi: 10.1111/bcp.13612
  • Schmieder GJ, Draelos ZD, Pariser DM, et al. Efficacy and safety of the Janus kinase 1 inhibitor PF-04965842 in patients with moderate-to-severe psoriasis: phase II, randomized, double-blind, placebo-controlled study. Br J Dermatol. 2018;179(1):54–62. doi: 10.1111/bjd.16004
  • Olumiant - European Medicines Agency. https://www.ema.europa.eu/en/medicines/human/EPAR/olumiant. 2023.
  • FDA approves OLUMIANT® (baricitinib) 2-mg tablets for the treatment of adults with moderately-to-severely active rheumatoid arthritis [Internet]. https://investor.lilly.com/news-releases/news-release-details/fda-approves-olumiantr-baricitinib-2-mg-tablets-treatment-adults. 2018 [cited 2023 May 24]. Available from: https://investor.lilly.com/news-releases/news-release-details/fda-approves-olumiantr-baricitinib-2-mg-tablets-treatment-adults.
  • Shi JG, Chen X, Lee F, et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol. 2014;54(12):1354–1361. doi: 10.1002/jcph.354
  • Papp KA, Menter MA, Raman M, et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2016;174(6):1266–1276. doi: 10.1111/bjd.14403
  • Bissonnette R, Luchi M, Fidelus-Gort R, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of the safety and efficacy of INCB039110, an oral janus kinase 1 inhibitor, in patients with stable, chronic plaque psoriasis. J Dermatological Treat. 2016;27(4):332–338. doi: 10.3109/09546634.2015.1115819
  • Jo CE, Gooderham M, Beecker J. TYK 2 inhibitors for the treatment of dermatologic conditions: the evolution of JAK inhibitors. Int J Dermatol John Wiley And Sons Inc. 2022;61(2):139–147. doi: 10.1111/ijd.15605
  • Banfield C, Scaramozza M, Zhang W, et al. The safety, tolerability, pharmacokinetics, and pharmacodynamics of a TYK2/JAK1 Inhibitor (PF-06700841) in healthy subjects and patients with plaque psoriasis. J Clin Pharmacol. 2018;58(4):434–447. doi: 10.1002/jcph.1046
  • Forman SB, Pariser DM, Poulin Y, et al. TYK2/JAK1 inhibitor PF-06700841 in patients with plaque psoriasis: phase iia, randomized, double-blind, placebo-controlled trial. J Invest Dermatol. 2020;140(12):2359–2370.e5. doi: 10.1016/j.jid.2020.03.962
  • Nick Paul Taylor. Pfizer sells midphase inflammatory drugs to mystery startup, exiting race against Bristol Myers [Internet]. BIOTECH. 2021 [cited 2023 May 24]. Available from: https://www.fiercebiotech.com/biotech/pfizer-sells-midphase-inflammatory-drugs-to-mystery-startup-exiting-race-against-bristol#:~:text=Biotech-,Pfizer%20sells%20midphase%20inflammatory%20drugs%20to%20mystery,exiting%20race%20against%20Bristol%20Myers&text=Pfizer%20is%20getting%20out%20of,25%25%20stake%20in%20the%20startup.
  • Tehlirian C, Peeva E, Kieras E, et al. Safety, tolerability, efficacy, pharmacokinetics, and pharmacodynamics of the oral TYK2 inhibitor PF-06826647 in participants with plaque psoriasis: a phase 1, randomised, double-blind, placebo-controlled, parallel-group study. Lancet Rheumatol. 2021;3(3):e204–e213. doi: 10.1016/S2665-9913(20)30397-0 Internet Available from https://linkinghub.elsevier.com/retrieve/pii/S2665991320303970.
  • Singh RSP, Pradhan V, Roberts ES, et al. Safety and pharmacokinetics of the oral TYK2 inhibitor PF-06826647: A phase I, randomized, double-blind, placebo-controlled, dose-escalation study. Clin Transl Sci. 2021;14(2):671–682. doi: 10.1111/cts.12929
  • Tehlirian C, Singh RSP, Pradhan V, et al. Oral tyrosine kinase 2 inhibitor PF-06826647 demonstrates efficacy and an acceptable safety profile in participants with moderate-to-severe plaque psoriasis in a phase 2b, randomized, double-blind, placebo-controlled study. J Am Acad Dermatol. 2022;87(2):333–342. doi: 10.1016/j.jaad.2022.03.059
  • Chimalakonda A, Burke J, Cheng L, et al. Selectivity profile of the tyrosine kinase 2 inhibitor deucravacitinib compared with Janus Kinase 1/2/3 Inhibitors. Dermatol Ther (Heidelb). 2021;11(5):1763–1776. doi: 10.1007/s13555-021-00596-8
  • Burke JR, Cheng L, Gillooly KM, et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain [Internet]. Sci Transl Med. 2019;11(502): Available from. http://stm.sciencemag.org/. doi: 10.1126/scitranslmed.aaw1736
  • Wrobleski ST, Moslin R, Lin S, et al. Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J Med Chem. 2019;62(20):8973–8995. doi: 10.1021/acs.jmedchem.9b00444
  • Moslin R, Zhang Y, Wrobleski ST, et al. Identification of N-Methyl nicotinamide and N-Methyl pyridazine-3-carboxamide pseudokinase domain ligands as highly selective allosteric inhibitors of tyrosine kinase 2 (TYK2). J Med Chem American Chemical Society. 2019. p. 8953–8972.
  • Papp K, Gordon K, Thaçi D, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018;379(14):1313–1321. doi: 10.1056/NEJMoa1806382
  • Catlett IM, Hu Y, Gao L, et al. Molecular and clinical effects of selective tyrosine kinase 2 inhibition with deucravacitinib in psoriasis. J Allergy Clin Immunol. 2022;149(6):2010–2020.e8. doi: 10.1016/j.jaci.2021.11.001 InternetAvailable fromhttps://linkinghub.elsevier.com/retrieve/pii/S0091674921016900.
  • Gordon K, Papp K, Gooderham M, et al. BMS-986165, an oral, selective tyrosine kinase 2 (TYK2) inhibitor: evaluation of changes in laboratory parameters in response to treatment in a phase 2 trial in psoriasis patients [Internet]. Available from: https://ctep.cancer.gov/.
  • Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol Nature Publishing Group. 2017;13(4):234–243. doi: 10.1038/nrrheum.2017.23
  • Thaçi D, Strober B, Gordon KB, et al. Deucravacitinib in moderate to severe psoriasis: clinical and quality-of-life outcomes in a phase 2 trial. Dermatol Ther (Heidelb). 2022;12(2):495–510. doi: 10.1007/s13555-021-00649-y
  • Blankenship K. Celgene, say goodbye to Otezla: BMS agrees to sell psoriasis drug to clear $74B merger [Internet]. FIERCE Pharma. 2019 [cited 2023 May 7]. Available from: https://www.fiercepharma.com/pharma/say-goodbye-to-otezla-bms-agress-to-sell-psoriasis-med-as-part-celgene-merger-deal.
  • Armstrong AW, Gooderham M, Warren RB, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J Am Acad Dermatol. 2023;88(1):29–39. doi: 10.1016/j.jaad.2022.07.002
  • Strober B, Thaçi D, Sofen H, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 program for evaluation of TYK2 inhibitor psoriasis second trial. J Am Acad Dermatol. 2023;88(1):40–51. doi: 10.1016/j.jaad.2022.08.061
  • Hoy SM. Deucravacitinib: first approval. Drugs. 2022;82:1671–1679. doi: 10.1007/s40265-022-01796-y
  • Sotyktu; Deucravacitinib. European medicines agency approval [Internet]. EMA. 2023 [cited 2023 May 7]. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-sotyktu_en.pdf.
  • Bristol Myers Squibb receives European commission approval of sotyktu (deucravacitinib), a once-daily oral treatment for adults with moderate-to-severe plaque psoriasis [internet]. Bristol Myers Squibb. 2023 [cited 2023 May 7]. Available from: https://news.bms.com/news/corporate-financial/2023/Bristol-Myers-Squibb-Receives-European-Commission-Approval-of-Sotyktu-deucravacitinib-a-Once-Daily-Oral-Treatment-for-Adults-With-Moderate-to-Severe-Plaque-Psoriasis/default.aspx.
  • Mease PJ, Deodhar AA, Van Der Heijde D, et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann Rheum Dis. 2022;81(6):815–822. doi: 10.1136/annrheumdis-2021-221664
  • Rubin DT. Efficacy and safety of deucravacitinib, an oral, selective tyrosine kinase 2 inhibitor, in patients with moderately to severely active ulcerative colitis: 12-week results from the phase 2 LATTICE-UC Study. Gastroenterol Hepatol (N Y). 2022;18:6. InternetAvailable from. http://www.ncbi.nlm.nih.gov/pubmed/36756651
  • Liu C, Lin J, Langevine C, et al. Discovery of BMS-986202: A clinical tyk2 inhibitor that binds to Tyk2 JH2. J Med Chem. 2021;64(1):677–694. doi: 10.1021/acs.jmedchem.0c01698
  • Takeda. Takeda to acquire late-stage, potential best-in-class, oral allosteric TYK2 Inhibitor NDI-034858 from Nimbus therapeutics [Internet]. Takeda. 2022 [cited 2023 Jun 5]. Available from: https://www.takeda.com/newsroom/newsreleases/2022/takeda-to-acquire-late-stage-potential-best-in-class-oral-allosteric-tyk2-inhibitor–ndi-034858-from-nimbus-therapeutics/.
  • Takeda. Takeda announces positive results in phase 2b study of investigational TAK-279, an oral, once-daily TYK2 inhibitor, in people with moderate-to-severe plaque psoriasis [internet]. Takeda. 2023 [cited 2023 Jun 5]. Available from: https://www.takeda.com/newsroom/newsreleases/2023/takeda-announces-positive-results-in-phase-2b-study-of-investigational-tak-279/.
  • Fala L. Otezla (apremilast), an oral PDE-4 inhibitor, receives FDA approval for the treatment of patients with active psoriatic arthritis and plaque psoriasis. Am Health Drug Benefits. 2015;8:105–110. Internet Available from. http://www.ncbi.nlm.nih.gov/pubmed/26629274
  • Gyldenløve M, Meteran H, Zachariae C, et al. Long-term clearance of severe plaque psoriasis with oral roflumilast Journal of the European academy of dermatology and venereology. John Wiley and Sons Inc; 2023. p. e429–e430.
  • Warren RB, Strober B, Silverberg JI, et al. Oral orismilast: efficacy and safety in moderate‐to‐severe psoriasis and development of modified release tablets. J Eur Acad Dermatol Venereol. 2023;37(4):711–720. doi: 10.1111/jdv.18812
  • Andrews MD, Dack KN, De Groot MJ, et al. Discovery of an oral, rule of 5 compliant, interleukin 17A protein–protein interaction modulator for the potential treatment of psoriasis and other inflammatory diseases. J Med Chem. 2022;65(13):8828–8842. doi: 10.1021/acs.jmedchem.2c00422
  • Goedken ER, Argiriadi MA, Dietrich JD, et al. Identification and structure-based drug design of cell-active inhibitors of interleukin 17A at a novel C-terminal site. Sci Rep. 2022;12(1):12. doi: 10.1038/s41598-022-18760-1
  • Armstrong M, Elmhirst E Lilly’s oral interleukin exit hints at a dicey future [Internet]. Evaluate Vantage. 2022 [cited 2023 May 8]. Available from: https://www.evaluate.com/vantage/articles/news/corporate-strategy/lillys-oral-interleukin-exit-hints-dicey-future.
  • Budwick D. DICE Therapeutics announces positive topline data from phase 1 clinical trial of lead oral IL-17 antagonist, DC-806. For Psoriasis. 2022.
  • Protagonist therapeutics. protagonist reports positive results from phase 1 and pre-clinical studies of oral interleukin-23 receptor antagonist JNJ-2113 [Internet]. Protagonist Therapeutics, Inc. 2023 [cited 2023 May 24]. Available from: https://www.prnewswire.com/news-releases/protagonist-reports-positive-results-from-phase-1-and-pre-clinical-studies-of-oral-interleukin-23-receptor-antagonist-jnj-2113-301823039.html.
  • Bader K New positive results of oral IL-23 receptor antagonist for psoriasis [internet]. Dermatology Times. 2023 [cited 2023 May 24]. Available from: https://www.dermatologytimes.com/view/new-positive-results-of-oral-il-23-receptor-antagonist-for-psoriasis.
  • Dömling A, Li X. TNF-α: the shape of small molecules to come? Drug discov today . 2022 Jan 27;(1):3–7. doi:10.1016/j.drudis.2021.06.018. Epub 2021 Jul 3. PMID: 34229081.
  • McMillan D, Martinez-Fleites C, Porter J, et al. Structural insights into the disruption of TNF-TNFR1 signalling by small molecules stabilising a distorted TNF. Nat Commun. 2021;12(1):12. doi: 10.1038/s41467-020-20828-3
  • O’Connell J, Porter J, Kroeplien B, et al. Small molecules that inhibit TNF signalling by stabilising an asymmetric form of the trimer. Nat Commun. 2019;10(1):10. doi: 10.1038/s41467-019-13616-1
  • Vugler A, O’Connell J, Nguyen MA, et al. An orally available small molecule that targets soluble TNF to deliver anti-TNF biologic-like efficacy in rheumatoid arthritis. Front Pharmacol. 2022;13. doi: 10.3389/fphar.2022.1037983
  • Pharmaceutical Technology. SAR-441566 by Sanofi for psoriasis: likelihood of approval. Pharm Technol. 2023.
  • Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7(1):nrs.07003. doi: 10.1621/nrs.07003
  • Tang L, Yang X, Liang Y, et al. Transcription factor retinoid-related orphan receptor γt: A promising target for the treatment of psoriasis. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.01210
  • Lee GR. The balance of th17 versus treg cells in autoimmunity. Int J Mol Sci MDPI AG. 2018;19(3):730. doi: 10.3390/ijms19030730
  • Vitae Pharmaceuticals I Vitae pharmaceuticals achieves proof-of-concept with first-in-class RORyt Inhibitor in moderate to severe psoriasis [Internet]. 2016 [cited 2023 May 24]. Available from: https://www.globenewswire.com/news-release/2016/03/16/820582/0/en/Vitae-Pharmaceuticals-Achieves-Proof-of-Concept-with-First-in-Class-RORyt-Inhibitor-in-Moderate-to-Severe-Psoriasis.html.
  • Gege C. RORγt inhibitors as potential back-ups for the phase II candidate VTP-43742 from Vitae pharmaceuticals: patent evaluation of WO2016061160 and US20160122345. Expert Opin Ther Pat. 2017;27(1):1–8. doi: 10.1080/13543776.2017.1262350
  • Pandya VB, Kumar S, Sachchidanand Sharma R, et al. Combating autoimmune diseases with retinoic acid receptor-related orphan receptor-γ (RORγ or RORc) inhibitors: hits and misses. J Med Chem American Chemical Society. 2018;61(24):10976–10995. doi: 10.1021/acs.jmedchem.8b00588
  • Capone A, Volpe E. Transcriptional regulators of T helper 17 cell differentiation in health and autoimmune diseases. Front Immunol. 2020;11: doi: 10.3389/fimmu.2020.00348
  • The pharma letter. Aurigene’s AUR101 disappoints in phase IIb study in moderate to severe psoriasis [Internet]. Thepharmaletter. 2022 [cited 2023 May 24]. Available from: https://www.thepharmaletter.com/article/aurigene-s-aur101-disappoints-in-phase-ii-study-in-moderate-to-severe-psoriasis.
  • Ooi QX, Kristoffersson A, Korell J, et al. Bounded integer model‐based analysis of psoriasis area and severity index in patients with moderate‐to‐severe plaque psoriasis receiving BI 730357. CPT Pharmacometrics Syst Pharmacol. 2023;12(6):758–769. doi: 10.1002/psp4.12948
  • Blankenbach KV, Schwalm S, Pfeilschifter J, et al. Sphingosine-1-phosphate receptor-2 antagonists: Therapeutic potential and potential risks. Front Pharmacol Frontiers Research Foundation. 2016;7. doi: 10.3389/fphar.2016.00167
  • Obinata H, Hla T. Sphingosine 1-phosphate and inflammation. Int Immunol 2019 Aug 23; 31(9):617–625. doi:10.1093/intimm/dxz037. PMID: 31049553; PMCID: PMC6939830.
  • Herzinger T, Kleuser B, Schäfer-Korting M, et al. Sphingosine-1-phosphate signaling and the skin. Am J Clin Dermatol. 2007;8(6):329–336. doi: 10.2165/00128071-200708060-00002
  • Schaper K, Kietzmann M, Bäumer W. Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. Mol Immunol. 2014;59(1):10–18. doi: 10.1016/j.molimm.2013.11.015
  • Yiu ZZN, Warren RB. Novel oral therapies for psoriasis and psoriatic arthritis. Am J Clin Dermatol Springer International Publishing. 2016;17(3):191–200. doi: 10.1007/s40257-016-0179-3
  • D’Ambrosio D, Steinmann J, Brossard P, et al. Differential effects of ponesimod, a selective S1P1 receptor modulator, on blood-circulating human T cell subpopulations. Immunopharmacol Immunotoxicol. 2015;37(1):103–109. doi: 10.3109/08923973.2014.993084
  • Vaclavkova A, Chimenti S, Arenberger P, et al. Oral ponesimod in patients with chronic plaque psoriasis: A randomised, double-blind, placebo-controlled phase 2 trial. Lancet. 2014;384(9959):2036–2045. doi: 10.1016/S0140-6736(14)60803-5
  • Bellinato F, Gisondi P, Girolomoni G. Latest advances for the treatment of chronic plaque psoriasis with biologics and oral small molecules. Biologics. 2021 June 29;15:247–253. doi:10.2147/BTT.S290309. PMID: 34239295; PMCID: PMC8258237.
  • Fishman P. Drugs targeting the A3 adenosine receptor: human clinical study data. Molecules. 2022 June 8;27(12): 3680. doi:10.3390/molecules27123680. MID: 35744805; PMCID: PMC9229414.
  • Cohen S, Barer F, Itzhak I, et al. Inhibition of IL-17 and IL-23 in human keratinocytes by the A3 adenosine receptor agonist piclidenoson. J Immunol Res. 2018;2018:1–8. doi: 10.1155/2018/2310970
  • Cutolo M, Sulli A, Pizzorni C, et al. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2001;60(8):729–735. doi: 10.1136/ard.60.8.729
  • David M, Gospodinov DK, Gheorghe N, et al. Treatment of plaque-type psoriasis with oral CF101: data from a phase II/III multicenter, randomized, controlled trial. J Drugs Dermatol. 2016;15(8):931–938.
  • Damasiewicz-Bodzek A, Szumska M, Tyrpień-Golder K. Antibodies to heat shock proteins 90α and 90β in psoriasis. Arch Immunol Ther Exp (Warsz). 2020;68(2):68. doi: 10.1007/s00005-020-00573-7
  • Czajkowski R, Kaszewski S, Tadrowski T, et al. Does HSP90 play an important role in psoriasis? Postepy Dermatol Alergol. 2021;38(2):319–326. doi: 10.5114/ada.2021.106210
  • Stenderup K, Rosada C, Gavillet B, et al. Debio 0932, a new oral Hsp90 inhibitor, alleviates psoriasis in a xenograft transplantation model. Acta Derm Venereol. 2014;94(6):672–676. doi: 10.2340/00015555-1838
  • Hansen RS, Thuesen KKH, Bregnhøj A, et al. The HSP90 inhibitor RGRN-305 exhibits strong immunomodulatory effects in human keratinocytes. Exp Dermatol. 2021;30(6):773–781. doi: 10.1111/exd.14302
  • Bregnhøj A, Thuesen KKH, Emmanuel T, et al. HSP90 inhibitor RGRN-305 for oral treatment of plaque-type psoriasis: efficacy, safety and biomarker results in an open-label proof-of-concept study. Br J Dermatol. 2022;186(5):861–874. doi: 10.1111/bjd.20880
  • Ben Abdallah H, Seeler S, Bregnhøj A, et al. Heat shock protein 90 inhibitor RGRN-305 potently attenuates skin inflammation. Front Immunol. 2023;14:14. doi: 10.3389/fimmu.2023.1128897
  • Yoon JH, Nguyen TTL, Duong VA, et al. Determination of KD025 (SLX-2119), a selective ROCK2 inhibitor, in rat plasma by high-performance liquid chromatography-tandem mass spectrometry and its pharmacokinetic application. Molecules. 2020;25(6):25. doi: 10.3390/molecules25061369
  • Blair HA. Belumosudil: first approval. drugs. Drugs. 2021;81(14):1677–1682. doi: 10.1007/s40265-021-01593-z
  • Hyun Lee J, Zheng Y, Bornstadt D, et al. Selective ROCK 2 inhibition in focal cerebral ischemia. Ann Clin Transl Neurol. 2014;1:2–14. DOI:10.1002/acn3.19
  • Zanin-Zhorov A, Weiss JM, Nyuydzefe MS, et al. Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism. Proc Natl Acad Sci, USA. 2014;111(47):16814–16819. doi: 10.1073/pnas.1414189111
  • Zhang L, Guo L, Wang L, et al. The efficacy and safety of tofacitinib, peficitinib, solcitinib, baricitinib, abrocitinib and deucravacitinib in plaque psoriasis – a network meta-analysis. Journal of the European Academy of Dermatology and Venereolog. John Wiley and Sons Inc; 2022. p. 1937–1946.
  • Sarabia S, Ranjith B, Koppikar S, et al. Efficacy and safety of JAK inhibitors in the treatment of psoriasis and psoriatic arthritis: a systematic review and meta-analysis. BMC Rheumatol. 2022;6(1):6. doi: 10.1186/s41927-022-00287-7
  • Helfand C FDA swats down Pfizer’s Xeljanz in plaque psoriasis [Internet]. Fierce Pharma. 2015 [cited 2023 May 24]. Available from: https://www.fiercepharma.com/regulatory/fda-swats-down-pfizer-s-xeljanz-plaque-psoriasis.
  • Abbvie. RINVOQ® (upadacitinib) receives U.S. FDA approval for active psoriatic arthritis [internet]. Abbvie. 2021 [cited 2023 Jun 5]. Available from: https://news.abbvie.com/news/press-releases/rinvoq-upadacitinib-receives-us-fda-approval-for-active-psoriatic-arthritis.htm.
  • Arora S, Das P, Arora G. Systematic review and recommendations to combine newer therapies with conventional therapy in psoriatic disease. Front Med. 2021;8: doi: 10.3389/fmed.2021.696597
  • Sreya R, Nene S, Pathade V, et al. Emerging trends in combination strategies with phototherapy in advanced psoriasis management. Inflammopharmacology. 2023;31(4):1761–1778. doi: 10.1007/s10787-023-01257-2
  • Hsieh TS, Tsai TF. Combination therapy for psoriasis with methotrexate and other oral disease-modifying antirheumatic drugs: a systematic review. Dermatol Ther (Heidelb) Adis. 2023;13(4):891–909. doi: 10.1007/s13555-023-00903-5
  • Ivanic MG, Thatiparthi A, Walia S, et al. Review of apremilast combination therapies in the treatment of moderate to severe psoriasis. J Drugs Dermatol. 2021;20(8):837–843. doi: 10.36849/JDD.5845
  • Gyldenløve M, Alinaghi F, Zachariae C, et al. Combination therapy with apremilast and biologics for psoriasis: a systematic review. Am J Clin Dermatol. 2022;23(5):605–613. doi: 10.1007/s40257-022-00703-1
  • Martin A, Thatiparthi A, Liu J, et al. Interleukin-17 inhibitor combination therapies for the treatment of psoriasis: a systematic review. J Clin Aesthet Dermatol. 2022;15:S19–S31. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/35784449
  • Diotallevi F, Paolinelli M, Radi G, et al. Latest combination therapies in psoriasis: narrative review of the literature. Dermatol Ther. 2022 Oct 35(10). Epub 2022 Aug 26. PMID: 35959523; PMCID: PMC9786636. doi: 10.1111/dth.15759

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.