852
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Insights of rheumatoid arthritis biomarkers

, &
Pages 185-195 | Received 16 Apr 2020, Accepted 04 Jul 2020, Published online: 10 Feb 2021

References

  • Aggarwal, R., et al., 2009. Anti-citrullinated peptide antibody assays and their role in the diagnosis of rheumatoid arthritis. Arthritis and rheumatism, 61 (11), 1472–1483.
  • Aletaha, D., Alasti, F., and Smolen, J.S., 2015. Rheumatoid factor, not antibodies against citrullinated proteins, is associated with baseline disease activity in rheumatoid arthritis clinical trials. Arthritis research and therapy, 17, 229–239.
  • Aletaha, D., et al., 2010. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Annals of the rheumatic diseases, 69 (9), 1580–1588.
  • Amulic, B., et al., 2012. Neutrophil function: from mechanisms to disease. Annual review of immunology, 30, 459–489.
  • Andrade, F., et al., 2010. Autocitrullination of human peptidyl arginine deiminase type 4 regulates protein citrullination during cell activation. Arthritis and rheumatism, 62 (6), 1630–1640.
  • Baka, Z., et al., 2012. Citrullination under physiological and pathological conditions. Joint bone spine, 79 (5), 431–436.
  • Bang, H., et al., 2012. Carbamoylation of vimentin in patients with rheumatoid arthritis: identification of a novel protein modification with a possible link to disease pathogenesis. Arthritis and rheumatology, 63, 685.
  • Biomarkers definitions working group. 2001. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.Clinical pharmacology & therapeutics, 69, 89–95.
  • Brink, M., et al., 2015. Anti-carbamylated protein antibodies in the pre-symptomatic phase of rheumatoid arthritis, their relationship with multiple anti-citrulline peptide antibodies and association with radiological damage. Arthritis research & therapy, 17 (1), 25.
  • Bruschi, M., et al., 2017. Post-translational modified proteins are biomarkers of autoimmune-processes: NETosis and the inflammatory-autoimmunity connection. Clinica chimica acta, 464, 12–16.
  • Burska, A.N., et al., 2014. Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediators of inflammation, 2014, 492873.
  • Carubbi, F., et al., 2019. Post-translational modifications of proteins: novel insights in the autoimmune response in rheumatoid arthritis. Cells, 8 (7), 657.
  • Challener, G.J., et al., 2016. Anti-carbamylated protein antibody levels correlate with anti-sa (citrullinated vimentin) antibody levels in rheumatoid arthritis. Journal of rheumatology, 43 (2), 273–281.
  • Chang, H.-H., et al., 2015. The W620 polymorphism in PTPN22 disrupts its interaction with peptidylarginine deiminase type 4 and enhances citrullination and NETosis. Arthritis & rheumatology, 67 (9), 2323–2334.
  • Chang, H.-H., et al., 2012. PTPN22.6, a dominant negative isoform of PTPN22 and potential biomarker of rheumatoid arthritis. Plos one, 7 (3), e33067.
  • Claxton, J.S., et al., 2013. Endogenous carbamylation of renal medullary proteins. PLoS ONE, 8 (12), e82655.
  • Conigliaro, P., et al., 2016. Autoantibodies in inflammatory arthritis. Autoimmunity reviews, 15 (7), 673–683.
  • Corsiero, E., et al., 2016. NETosis as source of autoantigens in rheumatoid arthritis. Frontiers in immunology, 7, 485.
  • Croft, A.P., et al., 2019. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature, 570 (7760), 246–251.
  • Darrah, E., et al., 2013. Erosive rheumatoid arthritis is associated with antibodies that activate PAD4 by increasing calcium sensitivity. Science translational medicine, 5 (186), 186ra65.
  • Di Ruscio, A., et al., 2013. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503 (7476), 371–376.
  • Dörner, T., et al., 2004. Rheumatoid factor revisited. Current opinion in rheumatology, 16 (3), 246–253.
  • Drinda, S., et al., 2002. Identification of the advanced glycation end products N(epsilon)-carboxymethyllysine in the synovial tissue of patients with rheumatoid arthritis. Annals of the rheumatic diseases, 61 (6), 488–492.
  • Duroux-Richard, I., et al., 2014. Circulating miRNA-125b is a potential biomarker predicting response to rituximab in rheumatoid arthritis. Mediators of inflammation, 2014, 342524.
  • Eggleton, P., et al., 2013. Detection and isolation of human serum autoantibodies that recognize oxidatively modified autoantigens. Free radical biology and medicine, 57, 79–91.
  • England, B.R., et al., 2019. Malondialdehyde-acetaldehyde adducts and antibody responses in rheumatoid arthritis-associated interstitial lung disease. Arthritis & rheumatology, 71 (9), 1483–1493.
  • Fehr, T., et al., 1997. Role of repetitive antigen patterns for induction of antibodies against antibodies. Journal of experimental medicine, 185 (10), 1785–1792.
  • Filková, M., et al., 2014. Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Annals of the rheumatic diseases, 73 (10), 1898–1904.
  • Firestein, G.S., 2017. Etiology and pathogenesis of rheumatoid arthritis. In: G.S. Firestein, R.C. Budd, S.E. Gabriel, I.B. McInnes, J.R. O’Dell, eds. Kelley and Firestein’s Textbook of Rheumatology. 10 ed. Philadelphia: Elsevier, pp. 1115–1166.e7.
  • Gabarrini, G., et al., 2015. The peptidylarginine deiminase gene is a conserved feature of Porphyromonas gingivalis. Scientific reports, 5, 13936–13938.
  • Gardette, A., et al., 2014. High anti-CCP antibody titres predict good response to rituximab in patients with active rheumatoid arthritis. Joint bone spine, 81 (5), 416–420.
  • Ge, C., and Holmdahl, R., 2019. The structure, specificity and function of anti-citrullinated protein antibodies. Nature reviews. Rheumatology, 15 (8), 503–508.
  • Goëb, V., et al., 2009. Diagnostic and prognostic usefulness of antibodies to citrullinated peptides. Joint bone spine, 76 (4), 343–349.
  • Gottenberg, J.E., et al., 2016. Brief report: association of rheumatoid factor and anti-citrullinated protein antibody positivity with better effectiveness of abatacept: results from the pan-european registry analysis. Arthritis & rheumatology, 68 (6), 1346–1352.
  • Gregersen, P.K., et al., 2006. PTPN22: setting thresholds for autoimmunity. Seminars in immunology, 18 (4), 214–223.
  • Hafkenscheid, L., et al., 2017. Structural analysis of variable domain glycosylation of anti-citrullinated protein antibodies in rheumatoid arthritis reveals the presence of highly sialylated glycans. Molecular & cellular proteomics, 16 (2), 278–287.
  • Hafkenscheid, L., et al., 2019. N-linked glycans in the variable domain of igg anti–citrullinated protein antibodies predict the development of rheumatoid arthritis. Arthritis & rheumatology, 71 (10), 1626–1633.
  • Hair, M.J.H., et al., 2014. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis & rheumatology, 66 (3), 513–522.
  • Halvorsen, E.H., et al., 2009. Serum IgG antibodies to peptidylarginine deiminase 4 predict radiographic progression in patients with rheumatoid arthritis treated with tumour necrosis factor-alpha blocking agents. Annals of the rheumatic diseases, 68 (2), 249–252.
  • Han, B., et al., 2014. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. American journal of human genetics, 94 (4), 522–532.
  • Hitchon, C.A., and El-Gabalawy, H.S., 2004. Oxidation in rheumatoid arthritis. Arthritis research & therapy, 6 (6), 265–278.
  • Huizinga, T.W.J., et al., 2005. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis & rheumatism, 52 (11), 3433–3438.
  • Humphreys, J.H., et al., 2016. Anticarbamylated protein antibodies are associated with long-term disability and increased disease activity in patients with early inflammatory arthritis: results from the Norfolk Arthritis Register. Annals of the rheumatic diseases, 75 (6), 1139–1144.
  • Jaisson, S., and Gillery, P., 2010. Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clinical chemistry, 56 (9), 1401–1412.
  • Jaisson, S., et al., 2007. Carbamylation differentially alters type I collagen sensitivity to various collagenases. Matrix biology, 26 (3), 190–196.
  • Janssen, K.M.J., et al., 2017. Autoantibodies against citrullinated histone H3 in rheumatoid arthritis and periodontitis patients. Journal of clinical periodontology, 44 (6), 577–584.
  • Jiang, X., et al., 2014. Anti-CarP antibodies in two large cohorts of patients with rheumatoid arthritis and their relationship to genetic risk factors, cigarette smoking and other autoantibodies. Annals of the rheumatic diseases, 73 (10), 1761–1768.
  • Joseph, R., et al., 2013. Association between chronic periodontitis and rheumatoid arthritis: a hospital-based case–control study. Rheumatology international, 33 (1), 103–109.
  • Kaur, S., White, S., and Bartold, P.M., 2013. Periodontal disease and rheumatoid arthritis: a systematic review. Journal of dental research, 92 (5), 399–408.
  • Khan, F. and Siddiqui, A.A., 2006. Prevalence of anti-3-nitrotyrosine antibodies in the joint synovial fluid of patients with rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. Clinica chimica acta, 370 (1-2), 100–107.
  • Kolarz, B., and Majdan, M., 2017. Epigenetic aspects of rheumatoid arthritis: contribution of non-coding RNAs. Seminars in arthritis and rheumatism, 46 (6), 724–731.
  • Kolfenbach, J.R., et al., 2010. Autoimmunity to peptidyl arginine deiminase type 4 precedes clinical onset of rheumatoid arthritis. Arthritis and rheumatism, 62 (9), 2633–2639.
  • Konig, M.F., et al., 2016. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Science translational medicine, 8 (369), 369ra176.
  • Koziel, J., Mydel, P., and Potempa, J., 2014. The link between periodontal disease and rheumatoid arthritis: an updated review. Current rheumatology reports, 16 (3), 408.
  • Krintel, S.B., et al., 2016. Prediction of treatment response to adalimumab: a double-blind placebo-controlled study of circulating microRNA in patients with early rheumatoid arthritis. Pharmacogenomics journal, 16 (2), 141–146.
  • Kurowska, W., et al., 2017. The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of rheumatoid arthritis. Central-European journal of immunology, 42 (4), 390–398.
  • Leshner, M., et al., 2012. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Frontiers in immunology, 3, 307.
  • Lewis, H.D., et al., 2015. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nature chemical biology, 11 (3), 189–191.
  • Li, Z., et al., 2018. Long non-coding RNAs in rheumatoid arthritis. Cell proliferation, 51 (1), e12404.
  • Li, P., et al., 2010. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. Journal of experimental medicine, 207 (9), 1853–1862.
  • Luime, J.J., et al., 2010. Does anti-mutated citrullinated vimentin have additional value as a serological marker in the diagnostic and prognostic investigation of patients with rheumatoid arthritis? A systematic review. Annals of the rheumatic diseases, 69 (2), 337–344.
  • Lundberg, K., et al., 2008. Antibodies to citrullinated α-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis & rheumatism, 58 (10), 3009–3019.
  • Mastrangelo, A., et al., 2015. The role of posttranslational protein modifications in rheumatological diseases: focus on rheumatoid arthritis. Journal of immunology research, 2015, 712490.
  • Matsumoto, A., et al., 2017. MTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 541 (7636), 228–232.
  • Matuszewska, A., Madej, M., and Wiland, P., 2016. [Immunological markers of rheumatoid arthritis]. Postepy higieny i medycyny doswiadczalnej (online), 70, 251–257.
  • Mikuls, T.R., et al., 2018. Malondialdehyde-acetaldehyde antibody concentrations in rheumatoid arthritis and other rheumatic conditions. International immunopharmacology, 56, 113–118.
  • Murata, K., et al., 2013. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PloS one, 8 (7), e69118.
  • Murata, K., et al., 2010. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis research & therapy, 12 (3), R86.
  • Mydel, P., et al., 2010. Carbamylation-dependent activation of t cells: a novel mechanism in the pathogenesis of autoimmune arthritis. Journal of immunology, 184 (12), 6882–6890.
  • Nakken, B., et al., 2017. Biomarkers for rheumatoid arthritis: from molecular processes to diagnostic applications-current concepts and future perspectives. Immunology letters, 189, 13–18.
  • Nienhuis, R.L.F., Mandema, E., and Smids, C., 1964. A new serum factor in patients with rheumatoid arthritis: the antiperinuclear factor. Annals of the rheumatic diseases, 23, 302–305.
  • Nissim, A., et al., 2005. Generation of neoantigenic epitopes after posttranslational modification of type II collagen by factors present within the inflamed joint. Arthritis and rheumatism, 52 (12), 3829–3838.
  • Okada, Y., et al., 2019. Genetics of rheumatoid arthritis: 2018 status. Annals of the rheumatic diseases, 78 (4), 446–453.
  • Ospelt, C., et al., 2017. Carbamylation of vimentin is inducible by smoking and represents an independent autoantigen in rheumatoid arthritis. Annals of the rheumatic diseases, 76 (7), 1176–1183.
  • Panayi, G.S., 2005. B cells: a fundamental role in the pathogenesis of rheumatoid arthritis? Rheumatology, 44 (Suppl 2), ii3–ii7.
  • Papayannopoulos, V., and Zychlinsky, A., 2009. NETs: a new strategy for using old weapons. Trends in immunology, 30 (11), 513–521.
  • Pratesi, F., et al., 2014. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Annals of the rheumatic diseases, 73 (7), 1414–1422.
  • Raychaudhuri, S., et al., 2012. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nature genetics, 44 (3), 291–296.
  • Regueiro, C., et al., 2017. Value of measuring anti-carbamylated protein antibodies for classification on early arthritis patients. Scientific reports, 7 (1), 12023.
  • Reyes-Castillo, Z., et al., 2015. Comparative analysis of autoantibodies targeting peptidylarginine deiminase type 4, mutated citrullinated vimentin and cyclic citrullinated peptides in rheumatoid arthritis: associations with cytokine profiles, clinical and genetic features. Clinical and experimental immunology, 182 (2), 119–131.
  • Rieck, M., et al., 2007. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. Journal of immunology), 179 (7), 4704–4710.
  • Rigby, W.F.C., et al., 2017. Anti-citrullinated protein antibody, anti-carbamylated protein antibody, and rheumatoid arthritis: azurophilic granules sing the blues. Arthritis & rheumatology, 69 (12), 2251–2255.
  • Sandhu, J.K., et al., 2003. Distribution of protein nitrotyrosine in synovial tissues of patients with rheumatoid arthritis and osteoarthritis. Journal of rheumatology, 30 (6), 1173–1181.
  • Scinocca, M., et al., 2014. Antihomocitrullinated fibrinogen antibodies are specific to rheumatoid arthritis and frequently bind citrullinated proteins/peptides. Journal of rheumatology, 41 (2), 270–279.
  • Seaman, A., et al., 2016. Anti-peptidyl-arginine deaminase 3 (PAD3) antibodies as a promising marker to measure joint damage in patients with rheumatoid arthritis. Autoimmunity reviews, 15 (7), 776–780.
  • Shi, J., et al., 2011. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proceedings of the National Academy of Sciences of the United States of America, 108 (42), 17372–17377.
  • Shi, J., et al., 2013. Anti-carbamylated protein antibodies are present in arthralgia patients and predict the development of rheumatoid arthritis. Arthritis and rheumatism, 65 (4), 911–915.
  • Sokolove, J., et al., 2012. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS oNE, 7 (5), e35296.
  • Spengler, J., et al., 2015. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis & rheumatology, 67 (12), 3135–3145.
  • Stanford, S.M., and Bottini, N., 2014. PTPN22: the archetypal non-HLA autoimmunity gene. Nature reviews. Rheumatology, 10 (10), 602–611.
  • Strollo, R., et al., 2013. Autoantibodies to post translationally modified type II collagen as potential biomarkers for rheumatoid arthritis. Arthritis & rheumatism, 65 (7), 1702–1712.
  • Sur Chowdhury, C., et al., 2014. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis research & therapy, 16 (3), R122.
  • Tan, E.M., and Smolen, J.S., 2016. Historical observations contributing insights on etiopathogenesis of rheumatoid arthritis and role of rheumatoid factor. Journal of experimental medicine, 213 (10), 1937–1950.
  • Tang, Y., et al., 2017. The role of long non-coding RNAs in rheumatic diseases. Nature reviews. Rheumatology, 13 (11), 657–669.
  • Tilvawala, R., et al., 2018. The rheumatoid arthritis-associated citrullinome. Cell chemical biology, 25 (6), 691–704.e6.
  • Tony, H.-P., et al., 2015. Combination of B cell biomarkers as independent predictors of response in patients with rheumatoid arthritis treated with rituximab. Clinical and experimental rheumatology, 33 (6), 887–894.
  • van Boekel, M.A., et al., 2002. Autoantibody systems in rheumatoid arthritis: specificity, sensitivity and diagnostic value. Arthritis research, 4 (2), 87–93.
  • van der Woude, D., et al., 2009. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis and rheumatism, 60 (4), 916–923.
  • van El, C.G., et al., 2013. Whole-genome sequencing in health care: recommendations of the European Society of Human Genetics. European journal of human genetics, 21 (6), 580–584.
  • Vang, T., et al., 2005. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nature genetics, 37 (12), 1317–1319.
  • Vang, T., et al., 2013. The autoimmune-predisposing variant of lymphoid tyrosine phosphatase favors T helper 1 responses. Human immunology, 74 (5), 574–585.
  • van Venrooij, W.J., et al., 2011. Anti-CCP antibodies: the past, the present and the future. Nature reviews. Rheumatology, 7 (7), 391–398.
  • Vergroesen, R.D., et al., 2018. B-cell receptor sequencing of anti-citrullinated protein antibody (ACPA) IgG-expressing B cells indicates a selective advantage for the introduction of N-glycosylation sites during somatic hypermutation. Annals of the rheumatic diseases, 77 (6), 956–958.
  • Volkov, M., van Schie, K.A., and van der Woude, D., 2019. Autoantibodies and B cells: the ABC of rheumatoid arthritis pathophysiology. Immunological reviews, 294 (1), 148–163.
  • Waaler, E., 2009. On the occurrence of a factor in human serum activating the specific agglutination of sheep blood corpuscles. Acta pathologica microbiologica scandinavica, 17 (2), 172–188.
  • Wang, Y., et al., 2015. PTPN22 variant R620W is associated with reduced toll-like receptor 7-induced type i interferon in systemic lupus erythematosus. Arthritis & rheumatology, 67 (9), 2403–2414.,
  • Winyard, P.G., et al., 2011. Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease. Biochemical society transactions, 39 (5), 1226–1232.
  • Wynn, T.A., 2019. Two types of fibroblast drive arthritis. Nature, 570 (7760), 169–170.
  • Xu, D., et al., 2017. Long noncoding RNAs expression profile and functional networks in rheumatoid arthritis. Oncotarget, 8 (56), 95280–95292.
  • Yang, X., et al., 2016. Diagnostic accuracy of anti-RA33 antibody for rheumatoid arthritis: systematic review and meta-analysis. Clinical and experimental rheumatology, 34 (3), 539–547.
  • Yee, A., et al., 2015. Anti-CarP antibodies as promising marker to measure joint damage and disease activity in patients with rheumatoid arthritis. Immunologic research, 61 (1-2), 24–30.
  • Zhang, Y., et al., 2016. Long noncoding RNA expression profile in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis research & therapy, 18 (1), 227.
  • Zheng, J., et al., 2012. Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue. Genes and immunity, 13 (8), 641–652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.