115
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Acute titanium dioxide nanoparticles exposure impaired spatial cognitive performance through neurotoxic and oxidative mechanisms in Wistar rats

, , , , , & show all
Pages 760-769 | Received 21 Jul 2021, Accepted 23 Oct 2021, Published online: 24 Nov 2021

References

  • Aebi, H., 1984. Catalase in vitro. Methods in enzymology, 105, 121–126.
  • Al-Ammari, A., et al., 2021. Toxicity assessment of synthesized titanium dioxide nanoparticle in fresh water algae Chlorella pyrenoidosa and a zebrafish liver line. Ecotoxicology and environment safety, 211, 111948.
  • Ali, S.A., et al., 2019. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: effect of dose and particle size. Biomarkers, 24 (5), 492–498.
  • Amara, S., et al., 2013. Effect of TiO2 nanoparticles on emotional behavior and biochemical parameters in adult Wistar rats. General physiology and biophysics, 32 (2), 229–234.
  • Amara, S., et al., 2014. Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats. Nanotoxicology, 8 (Suppl. 1), 208–215.
  • Amlouk, A., et al., 2006. Elaboration and characterization of TiO2 nanoparticles incorporated in SiO2 host matrix. Journal of physical chemistry solids, 67 (7), 1464–1468.
  • Baranowska-Wojcik, E., et al., 2020. Effects of titanium dioxide nanoparticles exposure on human health – a review. Biological trace element research, 193, 118–129.
  • Barqué-Cazenave, J., et al., 2020. Serotonin in animal cognition and behavior. International journal of molecular sciences, 21, 1649.
  • Berke, J., 2018. What does dopamine mean. Nature neuroscience, 21 (6), 787–793.
  • Brun, E., Carrière, M., and Mabondzo, A., 2012. In vitro evidence of dysregulation of blood brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles. Biomaterials, 33 (3), 886–896.
  • Brynskikh, A.M., et al., 2010. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease. Nanomedicine, 5 (3), 379–396.
  • Chen, Z., et al., 2020. Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale, 12 (38), 20033–20046.
  • Chuang, H.C., et al., 2020. Acute effects of pulmonary exposure to zinc oxide nanoparticles on the brain in vivo. Aerosol and air quality research, 20, 1651.
  • Cui, Y., et al., 2014. Prenatal exposure to nanoparticulate titanium dioxide enhances depressive-like behaviors in adult rats. Chemosphere, 96, 99–104.
  • Czajka, M., et al., 2015. Toxicity of titanium dioxide nanoparticles in central nervous system. Toxicology in vitro, 29 (5), 1042–1052.
  • Desai, V. and Kowshik, M., 2009. Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol–gel technique. Research journal of microbiology, 4 (3), 97–103.
  • Draper, H.H. and Hadley, M., 1990. Malondialdehyde determination as index of lipid peroxidation. Methods in enzymology, 186, 421–431.
  • Fabian, E., et al., 2008. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rat. Archives of toxicology, 82 (3), 151–157.
  • Fashui, H., et al., 2017. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice. International journal of nanomedicine, 12, 6197.
  • Flohé, L. and Günzler, W.A., 1984. Assays of glutathione peroxidase. Methods in enzymology, 21, 105–114.
  • Grissa, I., et al., 2020. In deep evaluation of the neurotoxicity of orally administered TiO2 nanoparticles. Brain research bulletin, 155, 119–128.
  • Gulati, K., Sinn, M.A., and Losic, D., 2012. Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain. International journal of nanomedicine, 7, 2069–2076.
  • Han, D., et al., 2011. Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. International journal of nanomedicine, 6, 1453–1461.
  • Hartree, E.F., 1972. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical biochemistry, 48 (2), 422–427.
  • He, Q., et al., 2018. Titanium dioxide nanoparticles induce mouse hippocampal neuron apoptosis via oxidative stress- and calcium imbalance-mediated endoplasmic reticulum stress. Environmental toxicology and pharmacology, 63, 6–15.
  • Hou, J.F., et al., 2019. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of environmental sciences, 75, 40–53.
  • Hougaard, K.S., et al., 2010. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Particle and fibre toxicology, 7, 16.
  • Hu, R., et al., 2010. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials, 31 (31), 8043–8050.
  • Jafari, S., et al., 2020. Biomedical applications of TiO2 nanostructures: recent advances. International journal of nanomedicine, 15, 3447–3470.
  • Jovanovic, B., 2015. Critical review of public health regulations of titanium dioxide, a human additive. Integrated environmental assessment and management, 11, 10–20.
  • Kakinuma, K., et al., 1979. A determination of H2O2 release by the treatment of human blood polymorphonuclear leukocytes with myristate. Journal of biochemistry, 86 (1), 87–95.
  • Lee, J., et al., 2019. Titanium dioxide nanoparticles oral exposure to pregnant rats and its distribution. Particle and fibre toxicology, 16 (1), 31.
  • Li, N., et al., 2010. Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticles. Toxicology letters, 195 (2–3), 161–168.
  • Long, T.C., et al., 2007. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental health perspectives, 115 (11), 1631–1637.
  • M’rad, I., et al., 2018. Aluminium oxide compromises spatial learning and memory performance in rats. EXCLI journal, 17, 200–2010.
  • Ma, L., et al., 2010. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials, 31 (1), 99–105.
  • Maaroufi, K., et al., 2009. Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate. Physiology & behavior, 96 (2), 343–349.
  • Maaroufi, K., et al., 2014. Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload. Behavioural brain research, 258, 80–89.
  • Misra, H.P. and Fridovich, I., 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of biological chemistry, 247 (10), 3170–3175.
  • Mohammadipour, A., et al., 2014. Maternal exposure to titanium dioxide nanoparticles during pregnancy impaired memory and decreased hippocampal cell proliferation in rat offspring. Environmental toxicology and pharmacology, 37 (2), 617–625.
  • Morris, R., 1984. Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods, 11 (1), 47–60.
  • Murugadoss, S., et al., 2017. Toxicology of silica nanoparticles: an update. Archives of toxicology, 91 (9), 2967–3010.
  • Muthu, M.S. and Singh, S., 2009. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine, 4 (1), 105–118.
  • Oberdörster, G., Ferin, J., and Lehnert, B.E., 1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environmental health perspectives, 102, 173–179.
  • Ouni, S., et al., 2019. Toxicity and effects of copper oxide nanoparticles on cognitive performances in rats. Archives of environmental & occupational health, 75 (7), 384–394.
  • Pellow, S., et al., 1985. Validation of open: closed arm entries in an elevated plus maze as a measure of anxiety in the rat. Journal of neuroscience methods, 14 (3), 149–167.
  • Pisoschi, A.M. and Pop, A., 2015. The role of antioxidants in the chemistry of oxidative stress: a review. European journal of medicinal chemistry, 97, 55–74.
  • Power, K.W., et al., 2006. Research strategies for safety evaluation of nanomaterials. Part VI. Characterisation of nanoscale particles for toxicological evaluation. Toxicological sciences, 90 (2), 296–303.
  • Rashid, M.M., Forte Tavčer, P., and Tomšič, B., 2021. Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials, 11 (9), 2354.
  • Rihane, N., et al., 2015. Sub-acute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environmental science and pollution research international, 22 (11), 8728–8737.
  • Shabbir, S., et al., 2021. Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. BioNanoScience, 11 (2), 621–632.
  • Shakeel, M., et al., 2016. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biological trace element research, 172 (1), 1–36.
  • Shi, H., et al., 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Particle and fibre toxicology, 10, 15–33.
  • Shimizu, M., et al., 2009. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Particle and fibre toxicology, 6, 20–28.
  • Shin, J.A., et al., 2010. Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse. Neuroscience, 165 (2), 445–454.
  • Shinohara, N., et al., 2014. Tissue distribution and clearance of intravenously administered titanium dioxide (TiO2) nanoparticles. Nanotoxicology, 8 (2), 132–141.
  • Shrivastava, R., et al., 2014. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug and chemical toxicology, 37 (3), 336–347.
  • Shukla, R.K., et al., 2011. ROS mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicology in vitro, 25 (1), 231–241.
  • Song, B., et al., 2015. A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale research letters, 10 (1), 1042.
  • Su, M., et al., 2015. Involvement of neurotrophins and related signaling genes in TiO2 nanoparticle – induced inflammation in the hippocampus of mice. Toxicology research, 4 (2), 344–350.
  • Takashima, I., et al., 1978. Hydrothermal alteration of Onuma geothermal area, Akita Prefecture, Northeast Japan. Report geological survey of Japan, 259, 281–309.
  • Takeda, K., et al., 2009. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. Journal of health science, 55 (1), 95–102.
  • Trouiller, B., et al., 2009. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer research, 69 (22), 8784–8789.
  • Valdiglesias, V., et al., 2013. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food and chemical toxicology, 57, 352–361.
  • Walf, A.A. and Frye, C.A., 2007. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature protocols, 2 (2), 322–328.
  • Wang, J., et al., 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology letters, 168 (2), 176–185.
  • Wang, J., et al., 2008a. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicology letters, 183 (1–3), 72–80.
  • Wang, J., et al., 2008b. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology, 254 (1–2), 82–90.
  • Weir, A., et al., 2012. Titanium dioxide nanoparticles in food and personal care products. Environmental science & technology, 46 (4), 2242–2250.
  • Wilson, B., 2011. Therapeutic compliance of nanomedicine in Alzheimer's disease. Nanomedicine, 6 (7), 1137–1139.
  • Wu, J., et al., 2009. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicology letters, 191 (1), 1–8.
  • Xu, J., et al., 2013. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLOS one, 8 (8), e70618.
  • Yamashita, K., et al., 2011. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nature nanotechnology, 6 (5), 321–328.
  • Ze, Y., et al., 2014a. Neurotoxic characteristics of spatial recognition damage of the hippocampus in mice following subchronic peroral exposure to TiO2 nanoparticles. Journal of hazardous materials, 264, 219–229.
  • Ze, Y., et al., 2014b. TiO2 nanoparticles induced hippocampal neuro-inflammation in mice. PLOS one, 9 (3), e92230.
  • Zeman, T., et al., 2018. Penetration, distribution and brain toxicity of titanium nanoparticles in rodents’ body: a review. IET nanobiotechnology, 12 (6), 695–700.
  • Zhang, L., et al., 2011. Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicology letters., 207 (1), 73–81.
  • Zhao, J., et al., 2009. Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. Journal of toxicology and environmental health, part A, 72 (19), 1141–1149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.