87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of HIV-1 Tat induced neurotoxicity in rat cortical cell culture

Pages 1-10 | Published online: 10 Jul 2009

References

  • Adamson DC, Wildemann B, Sasaki M, Glass JD, McArthur JC, Christov VI, Dawson TM, Dawson VL (1996). Immunologic NO synthase: Elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274: 1917–1921.
  • Albini A, Benelli R, Giunciuglio D, Cai T, Mariani G, Ferrini S, Noonan D (1998). Identification of a novel domain of HIV Tat involved in monocyte chemotaxis. J Biol Chem 273: 15895–15900.
  • Albini A, Ferrini S. Benelli R, Sforzini S. Giunciuglio D, Grazia Aluigi M, Proudfoot A, Alouani S, Wells T, Mariani G, Rabin R, Farber J, Noonan D (1998). HEV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA 95: 13153–13158.
  • Birrell GJ, Gordon MP, Marcoux FW (1993). (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid attenuates N-methyl-D-aspartate-induced neuronal cell death in cortical cultures via a reduction in delayed Ca2+ accumulation. Neuropharmacol 32: 1351–1358.
  • Bloom G, Rausch D (1997). HIV in the brain: pathology and neurobehavioral consequences. J NeuroVirol 3: 102–109.
  • Buonaguro L, Barillari G, Chang H, Bohan C, Kao V, Morgan R, Gallo R, Ensoli B (1992). Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J Virol 66: 7159–7167.
  • Chen P. Mayne M, Power C, Nath A (1997). The Tat protein of 1-1IV-1 induces tumor necrosis factor-a production: implications for HIV-I-associated neurolo-gical diseases. I Biol Chem 272: 22385–22388.
  • Conant K, Garzino-Demo A, Nath A, McArthur I, Halliday W, Power C, Gallo R, Major E (1998). Induction of monocyte chemoattractant protein-I in HIV-I Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95: 3117–3121.
  • Corasaniti M, Navarra M, Catani M, Melino G, Nistico G, Finazzi-Agro A (1996). NMDA and HIV-1 coat protein, gp120, produce necrotic but not apoptotic cell death in human CHP100 neuroblastoma cultures via a mechanism involving calpain. Biochem Biophys Res Commun 229: 299–304.
  • Diop A, Lesort M, Esclaire F, Sindou P. Couratier P. Hugon I (1994). Tetrodotoxin blocks HIV coat protein (gp120) toxicity in primary neuronal cultures. Neuros-ci Lett 165: 187–190.
  • Dreyer E, Lipton S (1997). The coat protein gp120 of HIV-1 inhibits astrocyte uptake of excitatory amino acids via macrophage arachidonic acid. Eur I Neurosci 7: 2502–2507.
  • Epstein L, Gendelman H (1993). Human immunodefi-ciency virus type 1 infection of the nervous system: pathogenic mechanism. Ann Neural 33: 429–436.
  • Ferrarese C, Riva R, Dolara A, DeMicheli A, Frattola L (1997). Elevated glutamate in the cerebrospinal fluid of patients with HIV dementia. JAMA 277: 630–633.
  • Fine SM, Angel RA, Perry SW, Epstein LG, Rothstein JD, Dewhursts S, Gelbard HA (1996). Tumor necrosis Factor a inhibits Glutamate uptake by primary Human Astrocytes. I Biol Chem 271: 15303–15306.
  • Fontana G, Valenti L, Raiteri M (1997). Gp120 can revert antagonism at the glycine site of NMDA receptors mediating GABA release from cultured hippocampal neurons. I Neurosci Res 49: 732–738.
  • Frankel A, Bredt D, Pabo C (1988). Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240: 70–73.
  • Frankel A, Pabo C (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189–1193.
  • Haughey NJ, Nath A, Geiger JD (1999). Involvement of Inositol 1,4,5-triphosphate-regulated stores of intracel-lular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein Tat. I Neurochem-istry 73: 1363–1374.
  • Hajimohammadreza I, Probert AW, Coughenour LL, Borosky SA, Marcoux FW, Boxer PA, Wang KW (1995). A specific Inhibitor of calcium/calmodulin-dependent protein kinase-II provides Neuroprotection against NMDA- and Hypoxia/Hypoglycemia-induced cell death. I Neuroscience 15: 4093–4101.
  • Hayman M, Arbuthnott G, Harkiss G, Brace H, Filippi P. Philippon V, Thomson D, Vigne R, Wright A (1993). Neurotoxicity of peptide analogues of the transactivat-ing protein tat from maedi-visna virus and human immunodeficiency virus. Neuroscience 53: 1–6.
  • He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Buscigilio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski I, Gabuzda D (1997). CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature (London) 385: 645–649.
  • Honore T, Davies S, Drejer I, Fletcher E, Jacobsen P, Lodge D, Fe N (1988). Quinoxalinediones: Potent competitive non-NMDA glutamate receptor agonists. Science 241: 701–703.
  • Ito M, Ishida T, He L, Tanabe F, Rongge Y, Miyakawa Y, Terunuma H (1998). HIV type 1 Tat protein inhibits interleukin 12 production by human peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 14: 845–849.
  • Johnson RT (1995). The pathogenesis of HIV infections of the brain. Curr Top Microbial Immunol 202: 3–10.
  • Katsikis P, Garcia-Ojeda M, Torres-Roca I, Greenwald D, Herzenberg L, Herzenberg L (1997). HIV type 1 Tat protein enhances activation-but not fas (CD95)-induced peripheral blood T cell apoptosis in healthy indivi-duals. Int Immunol 9: 835–841.
  • Kimpton J, Emerman M (1992). Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. I Viral 66: 2232–2239.
  • Kirsch T, Boehm M, Schuckert O, Metzger AU, Willbold D, Frank RW, Rosch P (1996). Cloning, High-Yield Expression in Escherichia coli, and purification of biologically active HIV-1 tat protein. Protein Expres-sion and Purification 8: 75–84.
  • Kruman II, Nath A, Mattson MP (1998). HIV-I protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium over-load, and oxidative stress. Exp Neural 154: 276–288.
  • Lafrenie R, Wahl L, Epstein I, Hewlett I, Yamada K, Dhawan S (1996). HIV-I-Tat protein promotes chemo-taxis and invasive behavior by monocytes. I Immunol 157: 974–977.
  • Lafrenie R, Wahl L, Epstein I, Yamada K, Dhawan S (1997). Activation of monocytes by HIV-1 Tat treat-ment is mediated by cytokine expression. I Immunol 159: 4077–4083.
  • Lavi E, Kolson D, Ulrich A, Fu L, Gonzalez-Scarano F (1998). Chemokine receptors in the human brain and their relationship to HIV infection. I NeuroVirol 4: 301–311.
  • Li C, Friedman D, Wang C, Metelev V, Pardee A (1995). Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268, 429–431.
  • Lipton S (1998). Neuronal injury associated with HIV-1: approaches to treatment. Annu Rev Pharmacol Toxicol 38: 159–177.
  • Lipton S (1996). Similarity of neuronal cell injury and death in AIDS dementia and focal cerebral ischemia: potential treatment with NMDA open-channel blockers and nitric oxide-related species. Brain Pathol 6: 507–517.
  • Lipton S, Sucher N, Kaiser P, Dreyer E (1991). Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron 7: 111–118.
  • Maccarrone M, Navarra M, Corasaniti M, Nistico G, Finazzi-Agro A (1998). Cytotoxic effect of HIV-1 coat glycoprotein gp120 on human neuroblastoma CHP100 cells involves activation of the arachidonate cascade. Biochem J 333: 45–49.
  • Magnuson D, Knudsen B, Geiger J, Brownstone R, Nath A (1995). Human immunodeficiency virus type 1 tat activates non-n-methyl-d-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol 37: 373–380.
  • Mann D, Frankel A (1991). Endocytosis and targeting of exogenous 1-1IV-1 tat protein. EMBO I 10: 1733–1739.
  • Nath A, Psooy K, Martin C, Knudsen B, Magnuson D, Haughey N, Geiger J. (1996). Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. I Virol 70: 1475–1480.
  • New D, Ma M, Epstein L, Nath A, Gelbard H (1997). Human immunodeficiency virus type 1 tat protein induces death by apoptosis in primary human neuron cultures. I NeuroVirol 3: 168–173.
  • New D, Maggirwar S, Epstein L, Dewhurst S, Gelbard H (1998). 1-IV-1 Tat induces neuronal death via tumor necrosis factor-a and activation of non-n-methyl-d-aspartate receptors by a NFKB-independent mechan-ism. I Biol Chem 273: 17852–17858.
  • Nishida K, Markey SP, Kustova Y, Morse III HC, Skolnick P, Basile AS, Sei Y (1996). Increased brain levels of platelet-activating factor in a murine acquired immune deficiency syndrome are NMDA receptor-mediated. I Neurochem 66: 433–435.
  • Nokta M, Hassan M, Loesch K, Pollard R (1995). HIV-induced TNF-a regulates arachidonic acid and PGE2 release from HIV-infected mononuclear phagocytes. Virology 208: 590–600.
  • Philippon V, Vellutini C, Gambarelli D, Harkiss G, Arbuthnott G, Metzger D, Filippi P (1994). The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: involvement of cytokines. Virology 205: 519–529.
  • Probert A, Borosky S, Marcoux F, Taylor C (1997). Sodium channel modulators prevent oxygen and glucose deprivation injury and glutamate release in ratneocortical cultures. Neuro pharmacology 36:1037-1038.
  • Raber J, Toggas S, Le S, Bloom F, Epstein C, Mucke L (1996). Central nervous system expression of HIV-1 gp120 activates the hypothalamic-pituitary-adrenal axis: evidence for involvement of NMDA receptors and nitric oxide synthase. Virology 226: 362–373.
  • Sabatier J-M, Vives E, Mabrouk K, Benjouad A, Rochat H, Duval A, Hue B, Bahraqui E (1991). Evidence for neurotoxic activity of Tat from human immunodefi-ciency virus type 1. 1 Virol 65: 961–967.
  • Sanders V. Pittman C, White M, Wang G, Wiley C, Achim C (1998). Chemokines and receptors in HIV encephalitis. AIDS 12: 1021–1026.
  • Scala G, Ruocco M, Ambrosino C, Mallardo M, Giordano B, Baldassarre F, Dragonetti E, Quinto I, Venuta S (1994). The expression of the interleukin 6 gene is induced by human immunodeficiency virus 1 TAT protein. I Exp Med 179: 961–971.
  • Selmaj KW, Raine CS (1988). Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23: 339–346.
  • Shi B, Raina J, Lorenzo A, Busciglio J., Gabuzda D (1998). Neuronal apoptosis induced by 1-1IV-1 Tat protein and TNF-a: potentiation of neurotoxicity mediated by oxidative stress and implications for HIV-1 dementia. I NeuroVirol 4: 281–290.
  • Strijbos P, Zamani M, Rothwell N, Arbuthnott G, Harkis G (1995). Neurotoxic mechanisms of transactivating protein Tat of maedi-visna virus. Neuroscience Lett 197: 215–218.
  • Toggas S, Masliah E, Mucke L (1996). Prevention of 1-1IV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res 706: 303–307.
  • Ushijina H, Nishio O, Klocicing R, Perovic S, Muller W (1995). Exposure to gp120 of HVI-1 induces an increased release of arachidonic acid in rat primary neuronal cell culture followed by NMDA receptor-mediated neurotoxicity. Eur I Neurosci 7: 1353–1359.
  • Vitkovic L, DaCunha A (1995). Role of astrocytosis in HIV-1-associated dementia. Curr Top Microbiol 202: 105–116.
  • Wang P, Barks JDE, Silverstein FS (1999). Tat, a human immunodeficiency virus-1-derived protein, augments excitotoxic hippocampal injury in neonatal rats. Neuroscience 88: 585–597.
  • Westerndorp M, Li W, Frank R, Karmmer P (1994). Human immunodeficiency virus type 1 Tat upregu-lates interleukin-2 secretion in activated cells. I Virol 68: 4177–4185.
  • Zidovetzki R, Wang J-L, Chen P, Jeyaseelan R, Hofman F (1998). Human immunodeficiency virus Tat protein induces interleukin 6 mRNA expression in human brain endothelial cells via protein kinase C and cAMP dependent protein kinase pathways. AIDS Res Hum Retroviruses 14: 825–833.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.