19
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Measles virus interactions with cellular receptors: Consequences for viral pathogenesis

Pages 391-399 | Published online: 10 Jul 2009

References

  • Allen IV, McQuaid S, McMahon, J, Kirk J, McConnell R (1996). The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. I Neuropathol Exp Neurol 55: 471–480.
  • Astier A, Trescol-Biémont M-C, Azocar O, Lamouille B, Rabourdin-Combe C (2000). Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phosphorylation. I Immunol 164: 6091–6095.
  • Auwaerter PG, Kaneshima H, McCune JM, Wiegand G, Griffin DE (1996). Measles virus infection of thymic epithelium in the SCID-hu mouse leads to thymocyte apoptosis. I Virol 70: 3734–3740.
  • Avota E, Avots A, Niewiesk S, Kane LP, Bommhardt U, ter Meulen V, Schneider-Schaulies S (2001). Disruption of Akt kinase activation is important for immunosup-pression induced by measles virus. Nat Med 7: 725–731.
  • Baker KA, Dutch RE, Lamb RA, Jardetzky TS (1999). Struc-tural basis for paramyxovirus mediated membrane fu-sion. Mol Cell 3: 309–319.
  • Bartz R, Firsching R, Rima B, ter Meulen V, Schneider-Schaulies J (1998). Differential receptor usage by measles virus strains. I Gen Virol 79: 1015–1025.
  • Bolt G, Pedersen IR (1998). The role of subtilisin-like pro-protein convertases for cleavage of the measles virus fu-sion glycoprotein in different cell types. Virology 252: 387–398.
  • Borrow P, Oldstone MBA (1995). Measles virus-mononuclear cell interactions. In: Measles virus. Billeter MA, ter Meulen V (eds). Springer-Verlag: Berlin, pp 85–100.
  • Buchholz CJ, Koller D, Devaux P, Mumenthaler C, Schneider-Schaulies J, Braun W, Gerlier D, Cattaneo R (1997). Mapping of the primary binding site of measles virus to its receptor CD46. I Biol Chem 272: 22072–22079.
  • Carrigan D, Knox KK (1990). Interferon-resistant subpopu-lations in several strains of measles virus: Positive se-lection by growth of the virus in brain tissue. I Virol 64: 1606–1615.
  • Casasnovas JM, Larvie M, Stehle T (1999). Crystal structure of two CD46 domains reveals an extended measles virus-binding surface. EMBO 118: 2911–2922.
  • Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J, Aguzzi A, Billeter MA, Cattaneo R (1998a). A matrix-less measles virus is infectious and elicits ex-tensive cell fusion: Consequences for propagation in the brain. EMBO 117: 3899–3908.
  • Cathomen T, Naim HY, Cattaneo R (1998b). Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. I Virol 72: 1224–1234.
  • Clements CJ, Cutts FT (1995). The epidemiology of measles: Thirty years of vaccination. In: Measles virus. Billeter MA, ter Meulen V (eds). Springer-Verlag: Berlin, pp 13–34.
  • Cocks BG, Chang C-CJ, Carballido JM, Yssel H, de Vries JE, Aversa G (1995). A novel receptor involved in T-cell activation. Nature 376: 260–263.
  • Dorig RE, Marcil A, Chopra A, Richardson CD (1993). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75: 295–305.
  • Dörries R, ter Meulen V (1984). Detection and identifica-tion of virus specific oligoclonal IgG in unconcentrated cerebrospinal fluid by immuno blot technique. I Neu-roimmunol 7: 77–89.
  • Duprex WP, Duffy I, McQuaid S, Hamill L, Schneider-Schaulies J, Cosby L, Billeter M, ter Meulen V, Rima B (1999a). The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. I Virol 73: 6916–6922.
  • Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK (1999b). Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. I Virol 73: 9568–9575.
  • Engelking O, Fedorov LM, Lilischkis R, ter Meulen V, Schneider-Schaulies S (1999). Measles virus-induced immunosuppression in vitro is associated with dereg-ulation of G1 cell cycle control proteins. I Gen Virol 80: 1599–1608.
  • Erlenhoefer C, Wurzer WJ, Löffler S, Schneider-Schaulies S, ter Meulen V, Schneider-Schaulies J (2001). CD150 (SLAM) is a receptor for measles virus, but is not in-volved in viral contact-mediated proliferation inhibi-tion. I Virol 75: 4499–4505.
  • Firsching R, Buchholz C, Schneider U, Cattaneo R, ter Meulen V, Schneider-Schaulies J (1999). Measles virus spread by cell-cell contacts: Uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake. I Virol 73: 5265–5273.
  • Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan M, Liu Y, Rabourdin-Combe C (1997). Measles virus sup-presses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. I Exp Med 186: 813–823.
  • Fujinami R, Sun X, Howell J, Jenkin JC, Burns JB (1998). Modulation of immune system function by measles virus infection: Role of soluble factor and direct infec-tion. I Virol 72: 9421–9427.
  • Gerlier D, Loveland B, Varior-Krishnan G, Thorley B, McKenzie IF, Rabourdin-Combe C (1994). Measles virus receptor properties are shared by several CD46 isoforms differing in extracellular regions and cytoplasmic tails. J Gen Virol 75: 2163–2171.
  • Gibbs FA, Gibbs L, Carpenter PR, Spies HW (1959). Elec-troencephalographic abnormality in "uncomplicated" childhood diseases. J Am Med Assoc 171: 1050–1057.
  • Griffin DE, Bellini WJ (1996). Measles virus In: Fields virology. Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Straus SE, Lippincott-Raven: Philadelphia, Pennsylvania, pp 1267–1312.
  • Griffin DE, Ward JB (1993). Differential CD4 T cell activa-tion in measles. I Infect Dis 168: 275–281.
  • Grosjean I, Caux C, Bella C, Berger I, Wild F, Banchereau J, Kaiserlian D (1997). Measles virus infects human den-dritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 186: 801–812.
  • Harrowe G, Sudduth-Klinger J, Payan DG (1992). Measles virus-substance P receptor interaction: Jurkat lympho-cytes transfected with substance P receptor cDNA en-hance measles virus fusion and replication. Cell Mol Neurobiol 12: 397–409.
  • Hirano A, Yang Z, Katayama Y, Korte-Sarfaty J, Wong TC (1999). Human CD46 enhances nitric oxide production in mouse macrophages in response to measles virus in-fection in the presence of gamma interferon: Depen-dence on the CD46 cytoplasmic domains. I Virol 73: 4776–4785.
  • Horvat B, Rivailler P, Varior-Krishnan G, Cardoso A, Gerlier D, Rarourdin-Combe C (1996). Transgenic mice express-ing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infec-tions. I Virol 70: 6673–6681.
  • Hsu EC, Iorio C, Sarangi F, Khine AA, Richardson CD (2001). CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immuno-suppressive properties of this virus. Virology 279: 9–21.
  • Hsu EC, Sarangi F, Iorio C, Sidhu MS, Udem SA, Dillehay DL, Xu W, Rota PA, Bellini WJ, Richardson CD (1998). A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. I Virol 72: 2905–2916.
  • Karp CL, Wysocka M, Wahl LM, Ahearn JM, Cuomo PJ, Sherry B, Trinchieri G, Griffin DE (1996). Mechanism of suppression of cell-mediated immunity by measles virus [published erratum appears in Science 1997 Feb 21;275(5303):1053]. Science 273: 228–231.
  • Katayama Y, Hirano A, Wong TC (2000). Human re-ceptor for measles virus (CD46) enhances nitric ox-ide production and restricts virus replication in mouse macrophages by modulating the production of alpha/beta-interferon. I Virol 74: 1252–1257.
  • Krantic S, Gimenez C, Rabourdin-Combe C (1995). Cell-to-cell contact via measles virus haemagglutinin-CD46 interaction triggers CD46 downregulation. I Gen Virol 76: 2793–2800.
  • Kurita-Taniguchi M, Fukui A, Hazeki K, Hirano A, Tsuji S, Matsumoto M, Watanabe M, Ueda S, Seya T (2000). Functional modulation of human macrophages through CD46 (measles virus receptor): Production of IL-12 p40 and nitric oxide in association with recruitment of protein-tyrosine phosphatase SHP-1 to CD46. I Im-munol 165: 5143–5152.
  • Lamb R (1993). Paramyxovirus fusion: A hypothesis for changes. Virology 197: 1–11.
  • Lambert DM, Barney S, Lambert AL, Guthrie K, Medinas R, Davis D, Bucy T, Erickson J, Merutka G, Petteway SR (1996). Peptides from conserved regions of paramyx-°virus fusion proteins are potent inhibitors of viral fu-sion. Proc Nat] Acad Sci USA 93: 2186–2191.
  • Langedijk JPM, Daus FJ, van Oirschot JT (1997). Sequence and structure alignment of paramyxoviridae attachment proteins and discovery of enzymatic activity for a mor-billivirus hemagglutinin. I Virol 71: 6155–6167.
  • Lawrence DMP, Patterson CE, Gales TL, D'Orazio JL, Vaughn MM, Rall GF (2000). Measles virus spread be-tween neurons requires cell contact but not CD46 expes-sion, syncytium formation, or extracellular virus pro-duction. I Virol 74: 1908–1918.
  • Liebert UG, Finke D (1995). Measles infections in rodents. In: Measles virus. Billeter MA, ter Meulen V (eds.) Springer-Verlag: Berlin, pp 149–166.
  • Liebert UG, Linington C, ter Meulen V (1988). Induction of autoimmune reactions to myelin basic protein in measles virus encephalitis in Lewis rats. I Neuroim-muno117: 103–118.
  • Manchester M, Eto DS, Valsamakis A, Liton PB, Fernandez-Munoz R, Rota PA, Bellini WJ, Forthal DN, Oldstone MBA (2000). Clinical isolates of measles virus use CD46 as a cellular receptor. I Virol 74: 3967–3974.
  • Manchester M, Liszewski MK, Atkinson JP, Oldstone MB (1994). Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc Natl Acad Sci USA 91: 2161–2165.
  • McQuaid S, Campbell S, Wallace IJ, Kirk J, Cosby SL (1998). Measles virus infection and replication in undifferenti-ated and differentiated human neuronal cells in culture. Virol 72: 5245–5250.
  • Meissner NN, Koschel K (1995). Downregulation of en-dothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections. I Virol 69: 5191–5194.
  • Moeller K, Duffy I, Duprex P, Rima B, Beschorner R, Fauser S, Meyermann R, Niewiesk S, ter Meulen V, Schneider-Schaulies J (2001). Recombinant measles viruses expressing altered hemagglutinin (H) genes: Functional separation of mutations determining H anti-body escape from neurovirulence. I Virol 75: 7612–7620.
  • Mrkic B, Pavlovic J, Rulicke T, Volpe P, Buchholz CJ, Hourcade D, Atkinson JP, Aguzzi A, Cattaneo R (1998). Measles virus spread and pathogenesis in genetically modified mice. I Virol 72: 7420–7427.
  • Nagendra AR, Smith CW, Wyde PR (1995). Evidence that measles virus hemagglutinin initiates modulation of leukocyte function-associated antigen 1 expression. I Virol 69: 4357–4363.
  • Nakayama T, Mori T, Yamaguchi S, Sonoda S, Asamura S, Yamashity R, Takeuchi Y, Urano T (1995). Detection of measles virus genome directly from clinical samples by reverse transcriptase-polymerase chain reaction and ge-netic variability. Virus Res 35: 1–16.
  • Nanan R, Chittka B, Hadam M, Kreth HW (1999). Measles virus infection causes transient depletion of activated T cells from peripheral circulation. I Clin Viro112: 201–210.
  • Naniche D, Reed SI, Oldstone MBA (1999). Cell cycle arrest during measles virus infection: A GO-like block leads to suppression of Retinoblastoma protein expression. J Virol 73: 1894–1901.
  • Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993a). Human membrane cofactor protein (CD46) acts as a cellular re-ceptor for measles virus. I Virol 67: 6025–6032.
  • Naniche D, Wild TF, Rabourdin-Combe C, Gerlier D (1993b). Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. I Gen Virol 74: 1073–1079.
  • Niewiesk S, Eisenhuth I, Fooks A, Clegg JC, Schnorr JJ, Schneider-Schaulies S, ter Meulen V (1997). Measles virus-induced immune suppression in the cotton rat (Sigmodon hispidus) model depends on viral glycopro-teins. I Virol 71: 7214–7219.
  • Niewiesk S, Ohnimus H, Schnorr J-J, Götzelmann M, Schneider-Schaulies S, Jassoy C, ter Meulen V (1999). Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in unin-fected lymphocytes. I Gen Virol 80: 2023–2029.
  • Ogata A, Czub S, Ogata S, Cosby SL, McQuaid S, Budka H, ter Meulen V, Schneider-Schaulies J (1997). Absence of measles virus receptor (CD46) in lesions of subacute sclerosing panencephalitis brains. Acta Neuropathol (Berl) 94: 444–449.
  • Ohgimoto S, Ohgimoto K, Niewiesk S, Klagge IM, Pfeuffer J, Johnston ICD, Schneider-Schaulies J, Weidmann A, ter Meulen V, Schneider-Schaulies S (2001). The hemagglutinin protein is an important determinant for measles virus tropism for dendritic cells in vitro and immunosuppression in vivo. I Gen Virol 82: 1835–1844.
  • Ojala A (1947). On changes in the cerebrospinal fluid during measles. Ann Med Intern Fenn 36: 321–328.
  • Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y (2001). Measles virus on throat swabs from measles patients use signalling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. I Virol 75: 4399–4401.
  • Polacino PS, Pinchuk LM, Sidorenko SP, Clark EA (1996). Immunodeficiency virus cDNA synthesis in resting T lymphocytes is regulated by T cell activation signals and dendritic cells. I Med Primatol 25: 201–209.
  • Punnonen J, Cocks BG, Carballido JM, Bennett B, Peterson D, Aversa G, de Vries J (1997). Soluble and membrane-bound forms of signalling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B lymphocytes. I Exp Med 185: 993–1004.
  • Rall GF, Manchester M, Daniels LR, Callahan EM, Belman AR, Oldstone MB (1997). A transgenic mouse model for measles virus infection of the brain. Proc Nat] Acad Sci USA 94: 4659–4663.
  • Reinicke V, Mordhorst CH, Ingerslev N (1974). Central nervous system affection in connection with "ordinary" measles. Scand /Infect Dis 6: 131–135.
  • Rima BK, Earle JAP, Baczko K, Rota PA (1995). Measles virus strain variations. In: Measles virus. Billeter MA, ter Meulen V (eds). Springer-Verlag: Berlin, pp 65–84.
  • Rima BK, Earle JAP, Baczko K, ter Meulen V, Carabana J, Caballero M, Celma ML, Fernandez-Munoz R (1997). Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. Gen Virol 78: 97–106.
  • Sanchez-Lanier M, Guerlin P, McLaren LC, Bankhurst AD (1988). Measles-induced suppression of lymphocyte proliferation. Cell Immunol 116: 367–381.
  • Schlender J, Schnorr JJ, Spielhoffer P, Cathomen T, Cattaneo R, Billeter MA, ter Meulen V, Schneider-Schaulies, S (1996). Interaction of measles virus glyco-proteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro [see comments]. Proc Nat] Acad Sci USA 93: 13194–13199.
  • Schneider-Schaulies J, Dunster LM, Schwartz-Albiez R, Krohne G, ter Meulen V (1995a). Physical association of moesin and CD46 as a receptor complex for measles virus. I Virol 69: 2248–2256.
  • Schneider-Schaulies J, Schnorr JJ, Brinckmann U, Dunster LM, Baczko K, Liebert UG, Schneider-Schaulies S, ter Meulen V (1995b). Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Nat] Acad Sci USA 92: 3943–3947.
  • Schneider-Schaulies J, Schnorr JJ, Schlender J, Dunster LM, Schneider-Schaulies S, ter Meulen V (1996). Re-ceptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. J. Virol 70: 255–263.
  • Schneider-Schaulies S, Niewiesk S, Schneider-Schaulies J, ter Meulen V (2001). Measles virus induced immuno-suppression: Targets and effector mechanisms. Curr Mol Med 1: 163–181.
  • Schneider-Schaulies S, Niewiesk S, ter Meulen V (1999). Measles Virus. In: Molecular anatomy of viral per-sistence, Ahmed R, Chen I (eds). Wiley: Sussex, pp 297–318.
  • Schneider-Schaulies S, Schneider-Schaulies J, Schuster A, Bayer M, Pavlovic J, ter Meulen V (1994). Cell type-specific MxA-mediated inhibition of measles virus transcription in human brain cells./ Virol 68: 6910–6917.
  • Schnorr JJ, Dunster LM, Nanan R, Schneider-Schaulies J, Schneider-Schaulies S, ter Meulen V (1995). Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. Eur J Immunol 25: 976–984.
  • Schnorr JJ, Seufert M, Schlender J, Borst J, Johnston IC, ter Meulen V, Schneider-Schaulies S (1997). Cell cycle arrest rather than apoptosis is associated with measles virus contact-mediated immunosuppression in vitro. Gen Virol 78: 3217–3226.
  • Sun X, Burns JB, Howell JM, Fujinami RS (1998). Suppres-sion of antigen-specific T cell proliferation by measles virus infection: Role of a soluble factor in suppression. Virology 246: 24–33.
  • Tanaka K, Xie M, Yanagi Y (1998). The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Arch Virol 143: 213–225.
  • Tatsuo H, Ono N, Yanagi Y (2000). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406: 893–897.
  • Urbanska EM, Chambers BJ, Ljunggren HG, Norrby E, Kristensson K (1997). Spread of measles virus through axonal pathways into limbic structures in the brain of Tab -/- mice. J Med Virol 52: 362–369.
  • Weidmann A, Fischer C, Ohgimoto S, Riith C, ter Meulen V, Schneider-Schaulies S (2000a). Measles virus-induced immunosuppression in vitro is independent of complex glycosylation of viral glycoproteins and hemifusion. I Virol 74: 7548–7553.
  • Weidmann A, Maisner A, Garten W, Seufert M, ter Meulen V, Schneider-Schaulies S (2000b). Prote-olytic cleavage of the fusion protein but not mem-brane fusion is required for measles virus-induced immunosuppression in vitro. I Virol 74: 1985–1993.
  • Wild F, Buckland R (1997). Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein. I Gen Virol 78: 107–111.
  • Wild TF, Malvoisin E, Buckland R (1991). Measles virus: Both the hemagglutinin and fusion glycoproteins are required for fusion. I Gen Virol 72: 439–442.
  • Wild TF, Naniche D, Rabourdin-Combe C, Gerlier D, Malvoisin E, Lecouturier V, Buckland R (1995). Mode of entry of morbilliviruses. Vet Microbiol 44: 267–270.
  • Yanagi Y, Cubitt BA, Oldstone MB (1992). Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology 187: 280–289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.