14
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A Novel Neurotropic Expression Vector Based on the Avirulent A7(74) Strain of Semliki Forest Virus

, , , , , & show all
Pages 1-15 | Published online: 10 Jul 2009

References

  • Allsopp TE, Scallan MF, Williams A, Fazakerley JK (1998). Virus infection induces neuronal apoptosis: a compari-son with trophic factor withdrawal. Cell Death Differ 5: 50–59.
  • Altman-Hamamdzic S, Groseclose C, Ma JX, Hamamdzic D, Vrindavanam NS, Middaugh LD, Parratto NP, Sallee FR (1997). Expression of beta-galactosidase in mouse brain: utilization of a novel nonreplicative Sindbis virus vector as a neuronal gene delivery system. Gene Ther 4: 815–822.
  • Amor S, Scallan MF, Morris MM, Dyson H, Fazakerley JK (1996). Role of immune responses in protection and pathogenesis during Semliki Forest virus encephalitis. J Gen Virol 77: 281–291.
  • Atkins GJ (1983). The avirulent A7 Strain of Semliki Forest virus has reduced cytopathogenicity for neuroblastoma cells compared to the virulent L10 strain. J Gen Virol 64: 1401–1404.
  • Atkins GJ, Balluz IM, Glasgow GM, Mabruk MJ, Natale VA, Smyth JM, Sheahan BJ (1994). Analysis of the molec-ular basis of neuropathogenesis of RNA viruses in ex-perimental animals: relevance for human disease? Neu-ropathol Appl Neurobiol 20: 91–102.
  • Atkins GJ, Sheahan BJ, Mooney DA (1990). Pathogenicity of Semliki Forest virus for the rat central nervous sys-tem and primary rat neural cell cultures: possible impli-cations for the pathogenesis of multiple sclerosis. Neu-ropathol Appl Neurobiol 16: 57–68.
  • Benihoud K, Yeh P, Perricaudet M (1999). Adenovirus vec-tors for gene delivery. Curr Opin Biotechno110: 440–447.
  • Boulis NM, Turner DE, Dice JA, Bhatia V, Feldman EL (1999). Characterization of adenoviral gene expression in spinal cord after remote vector delivery. Neurosurgery 45: 131–137.
  • Bradish CJ, Allner K, Maber HB (1971). The virulence of original and derived strains of Semliki forest virus for mice, guinea-pigs and rabbits. J Gen Virol 12: 141–160.
  • Caley IJ, Betts MR, Davis NL, Swanstrom R, Frelinger JA, Johnston RE (1999). Venezuelan equine encephali-tis virus vectors expressing HIV-1 proteins: vector de-sign strategies for improved vaccine efficacy. Vaccine 6: 3124–3135.
  • Chen JP, Miller D, Katow S, Frey TK (1995). Expression of the rubella virus structural proteins by an infectious Sindbis virus vector. Arch Virol 140: 2075–2084.
  • Davis NL, Brown KW, Johnston RE (1996). A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. J Virol 70: 3781–3787.
  • Davis NL, Willis LV, Smith JF, Johnston RE (1989). In vitro synthesis of infectious venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable dele-tion mutant. Virology 171: 189–204.
  • Detrait ER, Bowers WJ, Halterman MW, Giuliano RE, Bennice L, Federoff HJ, Richfield EK (2002). Reporter gene transfer induces apoptosis in primary cortical neu-rons. Mol Ther 5: 723–730.
  • Dobson AT, Margolis TP, Sedarati F, Stevens JG, Feldman LT (1990). A latent, nonpathogenic HSV-1-derived vector stably expresses beta-galactosidase in mouse neurons. Neuron 5: 353–360.
  • Ehrengruber MU, Hennou S, Biieler H, Naim HY, Déglon N, Lundstrom K (2001). Gene transfer into neu-rons from hippocampal slices: comparison of recombi-nant Semliki Forest Virus, adenovirus, adeno-associated virus, lentivirus, and measles virus. Mol Cell Neurosci 17: 855–871.
  • Ehrengruber MU, Lundstrom K, Schweitzer C, Heuss C, Schlesinger S, Gähwiler BH (1999). Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc Nail Acad Sci USA 96: 7041–7046.
  • Ehrengruber MU, Renggli M, Raineteau O, Hennou S, Vähä-Koskela MJV, Hinkkanen AE, Lundstrom K (2003). Sem-liki Forest virus A7(74) transduces hippocampal neu-rons and glial cells in a temperature-dependent dual manner. J Neurovirol 9: 16–28.
  • Fazakerley JK, Pathak S, Scallan M, Amor S, Dyson H (1993). Replication of the A7(74), strain of Semliki Forest virus is restricted in neurons. Virology 195: 627–637.
  • Gdhwiler BH (1981). Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4: 329–342.
  • Gates MC, Sheahan BJ, O'Sullivan MA, Atkins GJ (1985). The pathogenicity of the A7, M9 and L10 strains of Semliki Forest virus for weanling mice and primary mouse brain cell cultures. J Gen Virol 11: 2365–2373.
  • Ghadge GD, Roos RP, Kang UJ, Wollmann R, Fishman PS, Kalynych AM, Barr E, Leiden JM (1995). CNS gene delivery by retrograde transport of recombinant replication-defective adenoviruses. Gene Ther 2: 132–137.
  • Glasgow GM, McGee MM, Sheahan BJ, Atkins GJ (1997). Death mechanisms in cultured cells infected by Semliki Forest virus. J Gen Virol 78: 1559–1563.
  • Griffin DE, Johnson RT (1977). Role of the immune response in recovery from Sindbis virus encephalitis in mice. J Immuno1118: 1070–1075.
  • Hahn CS, Hahn YS, Braciale TJ, Rice CM (1992). Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc Nati Acad Sci USA 89: 2679–2683.
  • Hermens WT, Verhaagen J (1998). Viral vectors, tools for gene transfer in the nervous system. Prog Neurobiol 55: 399–432.
  • Keir SD, Mitchell WJ, Feldman LT, Martin JR (1995). Target-ing and gene expression in spinal cord motor neurons following intramuscular inoculation of an HSV-1 vector. J NeuroVirol 1: 259–267.
  • Kuhn RJ, Niesters HG, Hong Z, Strauss JH (1991). In-fectious RNA transcripts from Ross River virus cDNA clones and the construction and characterization of de-fined chimeras with Sindbis virus. Virology 182: 430–441.
  • Levine B, Goldman JE, Jiang HH, Griffin DE, Hardwick JM (1996). Bc1-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci USA 93: 4810–4815.
  • Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bc1-2-interacting protein. J Virol 72: 8586–8596.
  • Liljeström P, Garoff H (1991). A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology NY 9: 1356–1361.
  • Liljestrom P, Lusa S, Huylebroeck D, Garoff H (1991). In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight mem-brane protein modulates virus release. J Virol 65: 4107–4113.
  • Lundstrom K, Abenavoli A, Malgaroli A, Ehrengruber MU (2003). Novel Semliki Forest virus vectors with reduced cytotoxicity and temperature-sensitivity: Long-term en-hancement of transgene expression. Mol Ther7: in press.
  • Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL, Carter EE, Barber RD, Baban DF, Kingsman SM, Kingsman AJ, O'Malley K, Mitrophanous KA (2001). Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral de-livery. Hum Mol Genet 15: 2109–2121.
  • McMenamin MM, Byrnes AP, Charlton HM, Coffin RS, Latchman DS, Wood MJ (1998). A y34.5 mutant of her-pes simplex 1 causes severe inflammation in the brain. Neuroscience 83: 1225–1237.
  • Oliver KR, Scallan MF, Dyson H, Fazakerley JK (1997). Sus-ceptibility to a neurotropic virus and its changing dis-tribution in the developing brain is a function of CNS maturity. J NeuroVirol 3: 38–48.
  • Olson KE, Myles KM, Seabaugh RC, Higgs S, Carlson JO, Beaty BJ (2000). Development of a Sindbis virus expres-sion system that efficiently expresses green fluorescent protein in midguts of Aedes aegypti following per os infection. Insect Mol Biol 9: 57–65.
  • Pathak S, Illavia SJ, Webb HE (1983). The identification and role of cells involved in CNS demyelination in mice after Semliki Forest virus infection: an ultrastructural study. Prog Brain Res 59: 237–254.
  • Pathak S, Webb HE, Oaten SW, Bateman S (1976). An electron-microscopic study of the development of vir-ulent and avirulent strains of Semliki Forest virus in mouse brain. J Neurol Sci 3: 289–300.
  • Piper RC, Tai C, Slot JW, Hahn CS, Rice CM, Huang H, James DE (1992). The efficient intracellular sequestration of the insulin-regulatable glucose transporter (GLUT-4) is conferred by the NH2 terminus. J Cell Biol 117: 729–743.
  • Polo JM, Belli BA, Driver DA, Frolov I, Sherrill S, Hariharan MJ, Townsend K, Perri S, Mento SJ, Jolly DJ, Chang SM, Schlesinger S, Dubensky TW Jr (1999). Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus-derived vectors. Proc Natl Acad Sci USA 96:4598–4603.
  • Pugachev KV, Mason PW, Shope RE, Frey TK (1995). Double-subgenomic Sindbis virus recombinants ex-pressing immunogenic proteins of Japanese encephalitis virus induce significant protection in mice against lethal JEV infection. Virology 212: 587–594.
  • Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF (1997). Replicon-helper systems from attenu-ated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 22: 389–401.
  • Pusztai R, Gould EA, Smith H (1971). Infection patterns in mice of an avirulent and virulent strain of Semliki Forest virus. Br J Exp Pathol 52: 669–677.
  • Raju R, Hajjou M, Hill KR, Botta V, Botta S (1999). In vivo addition of poly(A) tail and AU-rich sequences to the 3' terminus of the Sindbis virus RNA genome: a novel 3'-end repair pathway. J Virol 73: 2410–2419.
  • Raju R, Huang HV (1991). Analysis of Sindbis virus pro-moter recognition in vivo, using novel vectors with two subgenomic mRNA promoters. J Virol 65: 2501–2510.
  • Rice CM, Levis R, Strauss JH, Huang HV (1987). Produc-tion of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol 61: 3809–3819.
  • Sammin DJ, Butler D, Atkins GJ, Sheahan BJ (1999). Cell death mechanisms in the olfactory bulb of rats infected intranasally with Semliki Forest virus. Neuropathol Appl Neurobiol 3: 236–243.
  • Santagati MG, Määttä JA, Itäranta PV, Salmi AA, Hinkkanen AE (1995). The Semliki Forest virus E2 gene as a viru-lence determinant. J Gen Virol 76: 47–52.
  • Santagati MG, Määttä JA, Röyttä, M, Salmi AA, Hinkkanen AE (1998). The significance of the 3'-nontranslated re-gion and E2 amino acid mutations in the virulence of Semliki Forest virus in mice. Virology 243: 66–77.
  • Scallan MF, Fazakerley JK (1999). Aurothiolates enhance the replication of Semliki Forest virus in the CNS and the exocrine pancreas. J NeuroVirol 5: 392–400.
  • Schlesinger S (2001). Alphavirus vectors: development and potential therapeutic applications. Expert Opin Biol Then: 177–191.
  • Smerdou C, Liljestrom P (1999). Two-helper RNA system for production of recombinant Semliki Forest virus par-ticles. J Virol 73: 1092–1098.
  • Steiner JP, Hamilton GS, Ross DT, Valentine HL, Guo H, Connolly MA, Liang S, Ramsey C, Li JH, Huang W, Howorth P, Soni R, Fuller M, Sauer H, Nowotnik AC, Suzdak PD (1997). Neurotrophic immunophilin hg-ands stimulate structural and functional recovery in neurodegenerative animal models. Proc Nati Acad Sci USA 5: 2019–2024.
  • Strauss JH, Strauss EG (1994). The alphaviruses: gene ex-pression, replication, and evolution. Microbic)] Rev 58: 491–562.
  • Subak-Sharpe I, Dyson H, Fazakerley JK (1993). In vivo de-pletion of CD8+ T cells prevents lesions of demyelina-tion in Semliki Forest virus infection. J Virol 67: 7629–7633.
  • Thorne RG, Frey WH 2nd (2001). Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 12: 907–946.
  • Tuittila MT, Santagati MG, Röyttä M, Määttä JA, Hinkkanen AE (2000). Replicase complex genes of Semliki Forest virus confer lethal neurovirulence. J Virol 74: 4579–4589.
  • Wahlfors JJ, Zullo SA, Loimas S, Nelson DM, Morgan RA (2000). Evaluation of recombinant alphaviruses as vec-tors in gene therapy. Gene Ther 7: 472–480.
  • Xiong C, Levis R, Shen P, Schlesinger S, Rice CM, Huang HV (1989). Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243: 1188–1191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.