36
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Measles Infection of the Central Nervous System

, &
Pages 247-252 | Published online: 10 Jul 2009

References

  • Allen IV, McQuaid S, McMahon J, Kirk J, McConnell, R (1996). The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. J Neuropathol Exp Neurol 55: 471–480.
  • Andersson T, Schultzberg M, Schwarz R, Love A, Wickman C, Kristensson K (1991). NMDA-receptor antagonist pre-vents measles virus-induced neurodegeneration. Eur J Neurosci 3: 66–71.
  • Baczko K, Lampe J, Liebert UG, Brinckmann U, ter Meulen V, Pardowitz I, Budka H, Cosby SL, Isserte S, Rima BK (1993). Clonal expansion of hypermutated measles virus in a SSPE brain. Virology 197: 188–195.
  • Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J, Aguzzi A, Billeter MA, Cattaneo R (1998). A matrix-less measles virus is infectious and elicits ex-tensive cell fusion: consequences for propagation in the brain. EMBO J 17: 3899–3908.
  • Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter MA (1988). Biased hypermuta-tion and other genetic changes in defective measles viruses in human brain infections. Cell 55: 255–265.
  • Cocks BG, Chang C-CJ, Carballido JM, Yssel H, de Vries JE, Aversa G (1995). A novel receptor involved in T-cell activation. Nature 376: 260–263.
  • Dhib-Jalbut S, Xia J, Rangaviggula H, Fang Y-Y, Lee T (1999). Failure of measles virus to activate nuclear factor-KB in neuronal cells: implications on the immune response to viral infections in the central nervous system. JImmun ol 162: 4024–4029.
  • Dörig RE, Marcil A, Chopra A, Richardson CD (1993). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75: 295–305.
  • Duclos P, Ward BJ (1998). Measles vaccines. A review of adverse events. Drug Experience 6: 435–454.
  • Duprex WP, Duffy I, McQuaid S, Hamill L, Schneider-Schaulies J, Cosby L, Billeter M, ter Meulen V, Rima B (1999a). The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. J Virol 73: 6916–6922.
  • Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK (1999b). Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73: 9568–9575.
  • Erlenhoefer C, Wurzer WJ, Löffier S, Schneider-Schaulies S, ter Meulen V, Schneider-Schaulies J (2001). CD150 (SLAM) is a receptor for measles virus, but is not in-volved in viral contact-mediated proliferation inhibi-tion. J Virol 75: 4499–4505.
  • Evlashev A, Moyse E, Valentin H, Azocar O, Trescol-Biemont M-C, Marie JC, Rabourdin-Combe C, Horvat B (2000). Productive measles virus brain infection and apoptosis in CD46 transgenic mice. J Virol 74: 1373–1382.
  • Fang Y-Y, Song Z-M, Dhib-Jalbut S (2001). Mechanism of measles virus failure to activate NFK-B in neuronal cells. J NeuroVirol 7: 25–34.
  • Finke D, Brinckmann UG, ter Meulen V, Liebert UG (1995). Gamma interferon is a major mediator of the antiviral de-fense in experimental measles virus-induced encephali-tis. J Virol 69: 5469–5474.
  • Finke D, Liebert UG (1994). CD4+ T cells are essential in overcoming experimental murine measles encephalitis. Immunology 83: 184–189.
  • Fournier P, Brons NH, Berbers GA, Wiesmuller KH, Fleckenstein BT, Schneider F, Jung G, Muller CP (1997). Antibodies to a new linear site at the topographical or functional interface between the haemagglutinin and fu-sion proteins protect against measles encephalitis. J Gen Virol 78: 1295–1302.
  • Gogate N, Swoveland P, Yamabe T, Verma L, Woyciechowska J, Tarnowska-Dziduszko E, Dymecki J, Dhib-Jalbut S (1996). Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis. J Neuropathol Exp Neurol 55: 435–443.
  • Griffin DE, Bellini WJ (1996). Measles virus. In: Fields Vi-rology. Fields BN, Knipe DM, Howley PM, et al (eds). Philadelphia: Lippincott-Raven Publishers, pp 1267–1312.
  • Hara T, Yamashita S, Aiba H, Nihei K, Koide N, Good RA, Takeshita K (2000). Measles virus-specific T helper 1/T helper 2-cytokine production in subacute sclerosing pa-nencephalitis. J NeuroVirol 6: 121–126.
  • Hofrnan FM, Hinton DR, Baemayr J, Weil M, Merrill JE (1991). Lymphokines and i=unoregulatory molecules in subacute sclerosing panencephalitis. Clin Immunol Immunopathol 58: 331–342.
  • Horvat B, Rivailler P, Varior-Krishnan G, Cardoso A, Gerlier D, Rarourdin-Combe C (1996). Transgenic mice express-ing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infec-tions. J Virol 70: 6673–6681.
  • Hsu EC, Iorio C, Sarangi F, Khine AA, Richardson CD (2001). CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the i=uno-suppressive properties of this virus. Virology 279: 9–21.
  • Ito N, Ayata M, Shingai M, Furukawa K, Seto T, Matsunaga I, Muraoka M, Ogura H (2002). Comparison of theneuropathogenicity of two SSPE sibling viruses of the Osaka-2 strain isolated with Vero and B95a cells. J Neu-roVirol 8: 6–13.
  • Jin L, Beard S, Hunjan R, Brown D, Miller E (2002). Charac-terization of measles virus strains causing SSPE: a study of 11 cases. J NeuroVirol 8: 335–344.
  • Katz M (1995). Clinical spectrum of measles. Curr Top Microbic)] Immunol 191: 1–12.
  • Lawrence DMP, Patterson CE, Gales TL, D'Orazio JL, Vaughn MM, Rall GF (2000). Measles virus spread be-tween neurons requires cell contact but not CD46 ex-pression, syncytium formation, or extracellular virus production. J Virol 74: 1908–1918.
  • Liebert UG (1997). Measles virus infections of the central nervous system. Intervirology 40: 176–184.
  • Manchester M, Eto DS, Oldstone MBA (1999). Characteriza-tion of the inflammatory response during acute measles encephalitis in NSE-CD46 transgenic mice. J Neuroim-munol 96: 207–217.
  • Manchester M, Eto DS, Valsamakis A, Liton PB, Fernandez-Munoz R, Rota PA, Bellini WJ, Forthal DN, Oldstone MBA (2000). Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74: 3967–3974.
  • McQuaid S, Cosby SL (2002). An immunohistochemical study of the distribution of the measles virus receptors CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82: 1–7.
  • Meissner NN, Koschel K (1995). Downregulation of en-dothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections. J Virol 69: 5191–5194.
  • Minagawa H, Tanaka K, Ono N, Tatsuo H, Yanagi Y (2001). Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82: 2913–2917.
  • Moeller K, Duffy I, Duprex P, Rima B, Beschomer R, Fauser S, Meyermann R, Niewiesk S, ter Meulen V, Schneider-Schaulies J (2001). Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H an-tibody escape from neurovirulence. J Virol 75: 7612–7620.
  • Mrkic B, Pavlovic J, Rulicke T, Volpe P, Buchholz CJ, Hourcade D, Atkinson JP, Aguzzi A, Cattaneo R (1998). Measles virus spread and pathogenesis in genetically modified mice. J Virol 72: 7420–7427.
  • Nakayama T, Mori T, Yamaguchi S, Sonoda S, Asamura S, Yamashity R, Takeuchi Y, Urano T (1995). Detection of measles virus genome directly from clinical samples by reverse transcriptase-polymerase chain reaction and genetic variability. Virus Res 35: 1–16.
  • Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993). Human mem-brane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67: 6025–6032.
  • Naniche D, Yeh A, Eto D, Manchester M, Friedman RM, Oldstone MBA (2000). Evasion of host defenses by measles virus: wild-type measles virus infection inter-feres with induction of alpha/beta interferon produc-tion. J Virol 74: 7478–7484.
  • Neumeister C, Niewiesk S (1998). Recognition of measles virus-infected cells by CD8+ T cells depends on the H-2 molecule. J Gen Virol 79: 2583–2591.
  • Niewiesk S, Brinckmann U, Bankamp B, Sirak S, Liebert UG, ter Meulen V (1993). Susceptibility to measles virus-induced encephalitis in mice correlates with impaired antigen presentation to cytotoxic T lymphocytes. J Virol 67: 75–81.
  • Niewiesk S, Schneider-Schaulies J, Ohnimus H, Jassoy C, Schneider-Schaulies S, Diamond L, Logan JS, ter Meulen V (1997). CD46 expression does not overcome the intra-cellular block of measles virus replication in transgenic rats. J Virol 71: 7969–7973.
  • Ogata A, Czub S, Ogata S, Cosby SL, McQuaid S, Budka H, ter Meulen V, Schneider-Schaulies J (1997). Absence of measles virus receptor (CD46) in lesions of subacute sclerosing panencephalitis brains. Acta Neuropathol 94: 444–449.
  • Ogura H, Ayata M, Hayashi K, Seto T, Matsuoka O, Hattori H, Tanaka K, Tanaka K, Takano Y, Murata R (1997). Ef-ficient isolation of subacute sclerosing panencephalitis virus from patient brains by reference to magnetic reso-nance and computed tomographic images. J NeuroVirol 3: 304–309.
  • Ohgimoto S, Ohgimoto K, Niewiesk S, Klagge IM, Pfeuffer J, Johnston ICD, Schneider-Schaulies J, Weidmann A, ter Meulen V, Schneider-Schaulies S (2001). The hemagglu-tinin protein is an important determinant for measles virus tropism for dendritic cells in vitro and immuno-suppression in vivo. J Gen Virol 82: 1835–1844.
  • Oldstone MBA, Lewicki H, Thomas D, Tishon A, Dales S, Patterson J, Manchester M, Homann D, Naniche D, Holz A (1999). Measles virus infection in a transgenic model: virus-induced immunosuppresion and central nervous system disease. Cell 98: 629–640.
  • Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y (2001). Measles virus on throat swabs from measles patients use signalling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75: 4399–4401.
  • Partidos CD, Ripley J, Delmas A, Obeid OE, Denbury A, Steward MW (1997). Fine specificity of the antibody re-sponse to a synthetic peptide from the fusion protein and protection against measles virus-induced encephalitis in a mouse model. J Gen Virol 78: 3227–3232.
  • Patterson CE, Lawrence DMP, Echols LA, Rall GF (2002). Immune-mediated protectionfrom measles virus-induced central nervous system disease is non-cytolytic and gamma interferon dependent. J Virol 76: 4497–4506.
  • Patterson JB, Cornu TI, Redwine J, Dales S, Lewicki H, Holz A, Thomas D, Billeter MA, Oldstone MBA (2001). Evidence that hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively con-tributes to the chronic progressive CNS disease. Virology 291: 215–225.
  • Polacino PS, Pinchuk LM, Sidorenko SP, Clark EA (1996). Immunodeficiency virus cDNA synthesis in resting T lymphocytes is regulated by T cell activation signals and dendritic cells. J Med Primatol 25: 201–209.
  • Punnonen J, Cocks BG, Carballido JM, Bennett B, Peterson D, Aversa G, de Vries J (1997). Soluble and membrane-bound forms of signalling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthe-sis by activated human B lymphocytes. J Exp Med 185: 993–1004.
  • Rall GF, Manchester M, Daniels LR, Callahan EM, Belman AR, Oldstone MB (1997). A transgenic mouse model for measles virus infection of the brain. Proc Natl Acad Sci USA 94: 4659–4663.
  • Ra=ohan KW, McFarland HF, Bellini WJ, Gheuens J, Mc-Farlin DE (1983). Antibody-mediated modification of encephalitis induced by hamster neurotropic measles virus. J Infect Dis 147: 546–550.
  • Ra=ohan KW, McFarland HF, McFarlin DE (1981). Induc-tion of subacute murine measles encephalitis by mon-oclonal antibody to virus haemagglutinin. Nature 290: 588–589.
  • Ra=ohan KW, McFarland HF, McFarlin DE (1982). Sua-cute sclerosing panencephalitis after passive immuniza-tion and natural measles infection: role of antibody in persistence of measles virus. Neurology 32: 390–394.
  • Rima BK, Earle JAP, Baczko K, ter Meulen V, Carabana J, Caballero M, Celma ML, Fernandez-Munoz R (1997). Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78: 97–106.
  • Schneider-Schaulies J, Niewiesk S, Schneider-Schaulies S, ter Meulen V (1999). Measles virus in the CNS: the role of viral and host factors for the establishment and mainte-nance of a persistent infection. J NeuroVirol 5: 613–622.
  • Schneider-Schaulies S, Schneider-Schaulies J, Dunster LM, ter Meulen V (1995). Measles virus gene expression in neural cells. Curr Top Microbic)] Immuno1191: 101–116.
  • Shimizu T, Matsuishi T, Iwamoto R, Handa K, Yoshioka H, Kato H, Ueda S, Hara H, Tabira T, Mekada E (2002). Ele-vated levels of anti-CD9 antibodies in the cerebrospinal fluid of patients with subacute sclerosing panencephali-tis. J Infect Dis 185: 1346–1350.
  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406: 893–897.
  • ter Meulen V, Stephenson JR, Kreth HW (1983). Subacute sclerosing panencephalitis. In: Comprehensive virology, Vol. 18. Fraenkel-Conrat H, Wagner RR (eds), New York: Plenum Press, pp 105–159.
  • Urbanska EM, Chambers BJ, Ljunggren HG, Norrby E, Kristensson K (1997). Spread of measles virus through axonal pathways into limbic structures in the brain of Tab -/- mice. J Med Virol 52: 362–369.
  • Weidinger G, Czub S, Neumeister C, Harriott P, ter Meulen V, Niewiesk S (2000). Role of CD4+ and CD8+ T cells in the prevention of measles virus-induced encephalitis in mice. J Gen Virol 81: 2707–2713.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.