50
Views
1
CrossRef citations to date
0
Altmetric
Papers

West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection

, , , &
Pages 130-138 | Received 04 Oct 2006, Accepted 15 Dec 2006, Published online: 10 Jul 2009

References

  • Agamanolis D P, Leslie M J, Caveny E A, Guarner J, Shieh W J, Zaki S R. Neuropthological findings in West Nile virus encephalitis. A case report. Ann Neurol 2003; 54: 547–551
  • Asensio V C, Campbell I L. Chemokine gene expression in the brains of mice with lymphocytic choriomeningitis. J Virol 1997; 71: 7832–7840
  • Asensio V C, Lassmann S, Pagenstecher A, Steffensen S C, Henriksen S J, Campbell I L. C10 is a novel chemokine expressed in experimental inflammatory demyelinating disorders that promotes recruitment of macrophages to the central nervous system. Am J Pathol 1999; 154: 1181–1191
  • Bakonyi T, Hubalek Z, Rudolf I, Nowotny N. Novel Flavivirus or new lineage of West Nile virus, Central Europe. Emerg Infect Dis 2005; 11: 225–231
  • Buckweitz S, Kleiboeker S, Marioni K, Ramos-Vara J, Rottinghaus A, Schwabenton B, Jonson G. Sero-logical, reverse transcriptase-polymerase chain reaction, and immunohistochemical detection of West Nile virus in a clinically affected dog. Vet Diagn Invest 2003; 15: 324–329
  • Burleson F G, Chambers T M, Wiedbrauk D L. Virology: A laboratory manual. Academic Press, San Diego, CA 1992; 74–84
  • Cantile C, Del Piero F, Di Guardo G, Arispici M. Pathologic and immunohistochemical findings in naturally occuring West Nile virus infection in horses. Vet Pathol 2001; 38: 414–421
  • Chambers T J, Diamond M S. Pathogenesis of flavivirus encephalitis. Adv Virus Res 2003; 60: 273–342
  • Charlier N, Leyssen P, De Clercq E, Neyts J. Rodent models for the study of therapy against flavivirus infections. Antiviral Res 2004; 63: 67–77
  • Cheeran M CJ, Hu S, Sheng W S, Rashid A, Peterson P K, Lokensgard J M. Differential responses of human brain cells to West Nile virus infection. J NeuroVirol 2005; 11: 512–524
  • Diamond M S, Klein R S. West Nile virus: crossing the blood-brain barrier. Nat Med 2004; 10: 1294–1295
  • Diamond M S, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 2003; 77: 2578–2586
  • Dufour J H, Dziejman M, Liu M T, Leung J H, Lane T E, Luster A D. IFN-γ-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 2002; 168: 3195–3204
  • Doron S I, Dashe J F, Adelman L S, Brown W F, Werner B G, Hadley S. Histopathologically proven poliomyelitis with quadriplegia and loss of brainstem function due to West Nile virus infection. Clin Infect Dis 2003; 37: e74–e77
  • Garcia-Tapia D, Loiacono C M, Kleiboeker S B. Replication of West Nile virus in primary equine peripheral blood mononuclear cell cultures. Vet Immunol Immunopathol 2006; 110: 229–244
  • Glass W G, Lim J K, Cholera R, Pletnev A G, Gao J L, Murphy P M. Chemokine recptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 2005; 202: 1087–1098
  • Glass W G, McDermott D H, Lim J K, Leghong S, Fong Yu S, Frank W A, Pape J, Cheshier R C, Murphy P M. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 2006; 203: 35–40
  • Hayes E B, Komar N, Nasci R S, Montgomery S P, O'Leary D R, Campbell G L. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 2005; 11: 1167–1173
  • Hunsperger E A, Roehrig J T. Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J NeuroVirol 2006; 12: 129–139
  • Johnson D J, Ostlund E N, Pedersen D D, Schmitt B J. Detection of North American West Nile virus in animal tissue by a reverse transcription-nested polymerase chain reaction assay. Emerg Infect Dis 2001; 7: 739–741
  • Johnston J, Halliday G M, King N JC. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol 2000; 114: 560–568
  • Kanno M, Suzuki S, Fujiwara T, Yokoyama A, Skamoto A, Takahashi H, Imai Y, Takanaka J. Functional expression of CCL6 by rat microglia: a possible role of CCL6 in cell-cell communication. J Neuroimmunol 2005; 167: 72–80
  • Kelley T W, Prayson R A, Ruiz A I, Isada C M, Gordon S M. The neuropathology of West Nile virus meningoencephalitis and report of two cases and review of literature. Am J Clin Pathol 2003; 119: 749–753
  • King N JC, Shrestha B, Kesson A M. Immune modulation by Flaviviruses. Adv Virus Res 2003; 60: 121–155
  • Klein R S, Lin E, Zhang B, Luster A D, Tollet J, Samuel M A, Engle M, Diamond M S. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 2005; 79: 11457–11466
  • Kramer L D, Bernard K A. West Nile virus infection in birds and mammals. Ann N Y Acad Sci 2001; 951: 84–93
  • Lanciotti R S, Roehrig J T, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe K E, Crabtree M B, Scherret J H, Hall R A, MacKenzie J S, Cropp C B, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage H M, Stone W, McNamara T, Gubler D J. Origin of the West Nile virus responsible for an outbreak of encephalitis in the Northeaster United States. Science 1999; 286: 2333–2337
  • Levine B, Griffin D E. Molecular analysis of neurovirulent strains of Sindbis virus that evolve during persistent infection of scid mice. J Virol 1993; 67: 6872–6875
  • Lim J K, Glass W G, McDermott D H, Murphy P M. CCR5: no longer a “good for nothing” gene-chemokine control of West Nile virus infection. Trends Immunol 2006; 27: 308–312
  • McMinn P C, Dalgrano L, Weir R C. A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroninvasiveness in tissues of Suiss mice after peripheral inoculation. Virology 1996; 220: 414–423
  • Monath T P. Prospects for developing of a vaccine against the West Nile Virus. Ann N Y Acad Sci 2001; 951: 1–12, Review
  • Oliphant T, Engle M, Nybakken G E, Doane C, Johson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung K M, Ebel G D, Kramer L D, Fremont D H, Diamond M S. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 2005; 11: 522–530
  • Pogodina V V, Frolova M P, Malenko G V, Fokina G I, Koreshkova G V, Kiseleva L L, Bochkova N G, Ralph N M. Study on West Nile virus persisitence in monkeys. Arch Virol 1983; 75: 71–86
  • Prat A, Biernacki K, Wosik K, Antel J P. Glial cell influence on the human blood brain barrier. Glia 2001; 36: 145–155
  • Sarafi M N, Garcia-Zepeda E A, McLean J A, Charo I F, Luster A. Murine monocyte chemoattractant protein (MCP)-5: A novel CC chemokine that is a structural and functional homologue of human MCP-1. J Exp Med 1997; 185: 99–109
  • Shirato K, Kimura T, Mizutani T, Kariwa H, Takashima I. Different chemokine expression in lethal and non-lethal murine West Nile virus infection. J Med Virol 2004; 74: 507–513
  • Shrestha B, Gottlieb D, Diamond M. Infection and injury of neurons by West Nile encephalitis virus. J Virol 2003; 77: 13203–13213
  • Smithburn K C, Hughes T P, Burke A W, Paul J H. A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med 1940; 20: 471–492
  • Suchetana M, Bong-Suk K, Chipman P R, Rossmann M G, Kuhn R J. Structure of West Nile Virus. Science 2003; 10: 302
  • Sun D, Tani M, Newman T A, Krivacic K, Phillips M, Chernovsky A, Gill P, Wei T, Griswould K J, Ransohoff R M, Weller R O. Role of chemokines, neuronal projections, and the blood-barrier in the enhancement of cerebral EAE following focal brain damage. J Neuropathol Exp Neurol 2000; 59: 1031–1043
  • Wang T, Town T, Alexopoulou L, Anderson J F, Fikrig E, Flavell R A. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004; 10: 1366–1373
  • Xiao S Y, Guzman H, Zhang H, Travassos da Rosa A P, Tesh R B. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 2001; 7: 714–721

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.