Publication Cover
Neurocase
Behavior, Cognition and Neuroscience
Volume 21, 2015 - Issue 1
919
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Relational and conjunctive binding functions dissociate in short-term memory

, , , , &
Pages 56-66 | Received 09 Mar 2013, Accepted 01 Oct 2013, Published online: 06 Dec 2013

References

  • Baddeley, A., Allen, R., & Vargha-Khadem, F. (2010). Is the hippocampus necessary for visual and verbal binding in working memory? Neuropsychologia, 48, 1089–1095. Retrieved from PM:20006631
  • Baddeley, A., Jarrold, C., & Vargha-Khadem, F. (2011). Working memory and the hippocampus. Journal of Cognitive Neuroscience, 23, 3855–3861. doi:10.1162/jocn_a_00066
  • Basso, A., Capitani, E., & Laiacona, M. (1987). Raven’s coloured progressive matrices: Normative values on 305 adult normal controls. Functional Neurology, 2, 189–194.
  • Bergmann, H. C., Rijpkema, M., Fernandez, G., & Kessels, R. P. (2012). Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe. NeuroImage, 63, 989–997. doi:S1053-8119(12)00328-X
  • Brockmole, J. R., Parra, M. A., Della Sala, S., & Logie, R. (2008). Do binding deficits account for age-related decline in visual working memory? Psychonomic Bulletin & Review, 15, 543–547. http://dx.doi.org/10.3758/PBR.15.3.543
  • Brown, L. A., & Brockmole, J. R. (2010). The role of attention in binding visual features in working memory: Evidence from cognitive ageing. Quarterly Journal of Experimental Psychology, 63, 2067–2079. doi: 10.1080/17470211003721675
  • Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F., & Venneri, A. (2002). Rey-Osterrieth complex figure: Normative values in an Italian population sample. Neurological Sciences, 22, 443–447.
  • Carlesimo, G. A., Caltagirone, C., & Gainotti, G. & the MBD Group. (1996). The mental deterioration battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. European Neurology, 36, 378–384.
  • Cer, D. M., & O‘Reilly, R. C. (2006). Neural mechanisms of binding in the hippocampus and neocortex: Insights from computational models. In H. D. Zimmer, A. Mecklinger, & U. Lindenberger (Eds.), Handbook of binding and memory, perspective from cognitive neuroscience (pp. 193–220). New York, NY: Oxford University Press. Retrieved from http://dx.doi.org/10.1093/acprof:oso/9780198529675.003.0008
  • Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory and Cognition, 24, 403–416.
  • Chalfonte, B. L., Verfaellie, M., Johnson, M. K., & Reiss, L. (1996). Spatial location memory in amnesia: Binding item and location information under incidental and intentional encoding conditions. Memory, 4, 591–614.
  • Colombo, L., Sartori, G., & Brivio, C. (2002). Stima del quoziente intellettivo tramite l’applicazione del TIB (Test di Intelligenza Breve). Giornale Italiano di Psicologia, 3, 613–638.
  • Cowan, N., Naveh-Benjamin, M., Kilb, A., & Saults, J. S. (2006). Life-span development of visual working memory: When is feature binding difficult? Developmental Psychology, 42, 1089–1102.
  • Crawford, J. R., & Garthwaite, P. H. (2002). Investigation of the single case in neuropsychology: Confidence limits on the abnormality of test scores and test score differences. Neuropsychologia, 40, 1196–1208.
  • Crawford, J. R., & Garthwaite, P. H. (2005). Evaluation of criteria for classical dissociations in single-case studies by Monte Carlo simulation. Neuropsychology, 19, 664–678.
  • de Jager, C. A., Milwain, E., & Budge, M. (2002). Early detection of isolated memory deficits in the elderly: The need for more sensitive neuropsychological tests. Psychological Medicine, 32, 483–491.
  • Didic, M., Barbeau, E. J., Felician, O., Tramoni, E., Guedj, E., Poncet, M., & Ceccaldi, M.  (2011). Which memory system is impaired first in Alzheimer’s disease. Journal of Alzheimer’s Disease, 27, 11–22.
  • Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44, 109–120. doi:10.1016/j.neuron.2004.08.028
  • Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152.
  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. Retrieved from http://dx.doi.org/10.1016/0022-3956(75)90026-6
  • Giovagnoli, A. R., De Pesce M., Mascheroni, S., Simoncelli, M., Laiacona, M., & Capitani, E. (1996). Trail making test: Normative values from 287 normal adult controls. Italian Journal of Neurological Sciences, 17, 305–309 .
  • Grady, C. L. (2008). Cognitive neuroscience of aging. Annals of the New York Academy of Sciences, 1124, 127–144.
  • Grady, C. L., McIntosh, A. R., & Craik, F. I. (2003). Age-related differences in the functional connectivity of the hippocampus during memory encoding. Hippocampus, 13, 572–586.
  • Hannula, D. E., & Ranganath, C. (2008). Medial temporal lobe activity predicts successful relational memory binding. Journal of Neuroscience, 28, 116–124.
  • Isarida, T., & Isarin, T. K. (2007). Environmental context effects of background color in free recall. Memory and Cognition, 35, 1620–1629.
  • Luzzi, S., Pesallaccia, M., Fabi, K., Muti, M., Viticchi, G., Provinciali, L., & Piccirilli, M. (2011). Non-verbal memory measured by Rey-Osterrieth Complex Figure B: Normative data. Neurological Sciences, 32, 1081–1089.
  • Magni, E., Binetti, G., Bianchetti, A., Rozzini, R., & Trabucchi, M. (1996). Mini-mental state examination: A normative study in Italian elderly population. European Journal of Neurology, 3, 198–202.
  • Mayes, A., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11, 126–135.
  • Mayes, A. R., Holdstock, J. S., Isaac, C. L., Hunkin, N. M., & Roberts, N. (2002). Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Hippocampus, 12, 325–340.
  • Mayes, A. R., Holdstock, J. S., Isaac, C. L., Montaldi, D., Grigor, J., Gummer, A., … Norman, K. A.  (2004). Associative recognition in a patient with selective hippocampal lesions and relatively normal item recognition. Hippocampus, 14, 763–784.
  • Milner, B., Johnsrude, I., & Crane, J. (1997). Right medial temporal-lobe contribution to object-location memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 352, 1469–1474.
  • Mitchell, K. J., Johnson, M. K., Raye, C. L., & D‘Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Brain Research. Cognitive Brain Research, 10, 197–206.
  • Mitchell, K. J., Johnson, M. K., Raye, C. L., Mather, M., & D‘Esposito, M. (2000). Aging and reflective processes of working memory: Binding and test load deficits. Psychology and Aging, 15, 527–541.
  • Mitchell, K. J., Raye, C. L., Johnson, M. K., & Greene, E. J. (2006). An fMRI investigation of short-term source memory in young and older adults. NeuroImage, 30, 627–633.
  • Moses, S. N., & Ryan, J. D. (2006). A comparison and evaluation of the predictions of relational and conjunctive accounts of hippocampal function. Hippocampus, 16, 43–65.
  • Naveh-Benjamin, M., Brav, T. K., & Levy, O. (2007). The associative memory deficit of older adults: The role of strategy utilization. Psychology and Aging, 22, 202–208.
  • Novelli, G., Papagno, C., Capitani, E., Laiacona, M., Vallar, G., & Cappa, S. F. (1986). Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Archivio di Psicologia, Neurologia e Psichiatria, 4, 477–506.
  • O’Connell, H., Coen, R., Kidd, N., Warsi, M., Chin, A. V., & Lawlor, B. A. (2004). Early detection of Alzheimer’s disease (AD) using the CANTAB paired associates learning test. International Journal of Geriatric Psychiatry, 19, 1207–1208.
  • Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23, 104–118.
  • Olson, I. R., Moore, K. S., Stark, M., & Chatterjee, A. (2006). Visual working memory is impaired when the medial temporal lobe is damaged. Journal of Cognitive Neuroscience, 18, 1087–1097.
  • Olson, I. R., Page, K., Moore, K. S., Chatterjee, A., & Verfaellie, M. (2006). Working memory for conjunctions relies on the medial temporal lobe. Journal of neuroscience, 26, 4596–4601.
  • Olsen, R. K., Moses, S. N., Riggs, L., & Ryan, J. D. (2012). The hippocampus supports multiple cognitive processes through relational binding and comparison. Frontiers in Human Neuroscience, 6, 146. doi:10.3389/fnhum.2012.00146. Retrieved from http://www.frontiersin.org/Journal/Abstract.aspx?s=537&name=human_neuroscience&ART_DOI=10.3389/fnhum.2012.00146
  • Orsini, A., Grossi, D., Capitani, E., Laiacona, M., Papagno, C., & Vallar, G. (1987). Verbal and spatial immediate memory span: Normative data from 1355 adults and 1112 children. The Italian Journal of Neurological Sciences, 8, 539–548.
  • Parra, M. A., Abrahams, S., Fabi, K., Logie, R., Luzzi, S., & Della Sala, S. (2009). Short-term memory binding deficits in Alzheimer’s disease. Brain, 132, 1057–1066. doi:awp036 [pii];10.1093/brain/awp036
  • Parra, M. A., Abrahams, S., Logie, R., & Della Sala, S. (2009). Age and binding within-dimension features in visual short term memory. Neuroscience Letters, 449, 1–5. http://dx.doi.org/10.1016/j.neulet.2008.10.069.
  • Parra, M. A., Abrahams, S., Logie, R. H., & Della Sala, S. (2010). Visual short-term memory binding in Alzheimer’s disease and depression. Journal of Neurology, 257, 1160–1169. doi:10.1007/s00415-010-5484-9
  • Parra, M. A., Abrahams, S., Logie, R. H., Mendez, L. G., Lopera, F., & Della Sala, S. (2010). Visual short-term memory binding deficits in familial Alzheimer’s disease. Brain, 133, 2702–2713. doi:awq148 [pii];10.1093/brain/awq148
  • Parra, M. A., Della Sala, S., Abrahams, S., Logie, R. H., Mendez, L. G., & Lopera, F. (2011). Specific deficit of colour-colour short-term memory binding in sporadic and familial Alzheimer’s disease. Neuropsychologia, 49, 1943–1952. doi:S0028-3932(11)00154-0 [pii];10.1016/j.neuropsychologia.2011.03.022
  • Parra, M. A., Della Sala, S., Logie, R. H., & Abrahams, S. (2009). Selective impairment in visual short-term memory binding. Cognitive Neuropsychology, 26, 583–605. doi:919010676 [pii];10.1080/02643290903523286
  • Piekema, C., Kessels, R. P., Mars, R. B., Petersson, K. M., & Fernandez, G. (2006). The right hippocampus participates in short-term memory maintenance of object-location associations. NeuroImage, 33, 374–382.
  • Piekema, C., Rijpkema, M., Fernandez, G., & Kessels, R. P. (2010). Dissociating the neural correlates of intra-item and inter-item working-memory binding. PLoS.ONE, 5, e10214. doi:10.1371/journal.pone.0010214
  • Piras, F., Caltagirone, C., & Spalletta, G. (2010). Working memory performance and thalamus microstructure in healthy subjects. Neuroscience, 171, 496–505. Retrieved from http://www.sciencedirect.com/science/article/pii/S0306452210012273
  • Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. (2000). Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience, 3, 85–90.
  • Ryan, J. D., & Cohen, N. J. (2004). Processing and short-term retention of relational information in amnesia. Neuropsychologia, 42, 497–511.
  • Schendan, H. E., & Stern, C. E. (2008). Where vision meets memory: Prefrontal-posterior networks for visual object constancy during categorization and recognition. Cerebral Cortex, 18, 1695–1711. Retrieved from http://cercor.oxfordjournals.org/content/18/7/1695.abstract
  • Shafritz, K. M., Gore, J. C., & Marois, R. (2002). The role of the parietal cortex in visual feature binding. Proceedings of the National Academy of Sciences of the United States of America, 99, 10917–10922.
  • Siekmeier, P. J., Hasselmo, M. E., Howard, M. W., & Coyle, J. (2007). Modeling of context-dependent retrieval in hippocampal region CA1: Implications for cognitive function in schizophrenia. Schizophrenia Research, 89, 177–190. doi:S0920-9964(06)00363-X [pii];10.1016/j.schres.2006.08.007
  • Smith, M. L., & Milner, B. (1981). The role of the right hippocampus in the recall of spatial location. Neuropsychologia, 19, 781–793.
  • Song, J. H., & Jiang, Y. (2006). Visual working memory for simple and complex features: An fMRI study. NeuroImage, 30, 963–972. doi:10.1016/j.neuroimage.2005.10.006. Retrieved from http://www.sciencedirect.com/science/article/pii/S1053811905007901
  • Spinnler, H., & Tognoni, G. (Eds.). (1987). Standardizzazione e taratura italiana di test neuropsicologici. Italian Journal of Neurological Science, 8(6), 1–20.
  • Sutherland, R. J., & Rudy, J. W. (1989). Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia. Psychobiology, 17, 129–144. Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=6676919
  • Uncapher, M. R., Otten, L. J., & Rugg, M. D. (2006). Episodic encoding is more than the sum of its parts: An fMRI investigation of multifeatural contextual encoding. Neuron, 52, 547–556.
  • Ventre-Dominey, J., Bailly, A., Lavenne, F., Lebars, D., Mollion, H., Costes, N., & Dominey, P. F.   (2005). Double dissociation in neural correlates of visual working memory: A PET study. Brain Research. Cognitive Brain Research, 25, 747–759. doi:S0926-6410(05)00264-8 [pii];10.1016/j.cogbrainres.2005.09.004
  • Warrington, E., & James, M. (1991). Visual Object and Space Perception Battery (VOSP). Bury St Edmunds: Thames Valley Test Company.
  • Watanabe, Y., & Funahashi, S. (2012). Thalamic mediodorsal nucleus and working memory. Neuroscience and Biobehavioral Reviews, 36, 134–142. doi:S0149-7634(11)00085-6 [pii]; 10.1016/j.neubiorev.2011.05.003
  • Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.