Publication Cover
Laterality
Asymmetries of Brain, Behaviour, and Cognition
Volume 26, 2021 - Issue 1-2: Laterality in animals
149
Views
6
CrossRef citations to date
0
Altmetric
Original Papers

A leftward bias negatively correlated with performance is selectively displayed by domestic chicks during rule reversal (not acquisition)

ORCID Icon, & ORCID Icon
Pages 1-18 | Received 21 May 2020, Accepted 10 Jul 2020, Published online: 22 Jul 2020

References

  • Abeyesinghe, S. M., Nicol, C. J., Hartnell, S. J., & Wathes, C. M. (2005). Can domestic fowl, Gallus gallus domesticus, show self-control? Animal Behaviour, 70, 1–11. doi: 10.1016/j.anbehav.2004.10.011
  • Anderson, M. C. (2001). Active forgetting. Journal of Aggression, Maltreatment & Trauma, 4, 185–210. doi: 10.1300/J146v04n02_09
  • Anderson, M. C., & Neely, J. H. (1996). Chapter 8 – interference and inhibition in memory retrieval. In E. L. Bjork & R. A. Bjork (Eds.), Memory (pp. 237–313). San Diego, CA: Academic Press.
  • Andrew, R. J. (1991). The nature of behavioural lateralization in the chick. Neural and behavioural plasticity. Oxford: Oxford University Press.
  • Andrew, R. J., Johnston, A. N. B., Robins, A., & Rogers, L. J. (2004). Light experience and the development of behavioural lateralisation in chicks: II. Choice of familiar versus unfamiliar model social partner. Behavioural Brain Research, 155, 67–76. doi: 10.1016/j.bbr.2004.04.016
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. doi: 10.18637/jss.v067.i01
  • Bobbo, D., Vallortigara, G., & Mascetti, G. G. (2006). The effects of early post-hatching changes of imprinting object on the pattern of monocular/unihemispheric sleep of domestic chicks. Behavioural Brain Research, 170, 23–28. doi: 10.1016/j.bbr.2006.01.020
  • Bokkers, E. A. M., & Koene, P. (2002). Sex and type of feed effects on motivation and ability to walk for a food reward in fast growing broilers. Applied Animal Behaviour Science, 79, 247–261. doi: 10.1016/S0168-1591(02)00151-X
  • Chiandetti, C. (2017). Manipulation of strength of cerebral lateralization via embryonic light stimulation in birds. In L. J. Rogers & G. Vallortigara (Eds.), Lateralized brain functions: Methods in human and non-human species (pp. 611–631). New York: Springer.
  • Cozzutti, C., & Vallortigara, G. (2001). Hemispheric memories for the content and position of food caches in the domestic chick. Behavioral Neuroscience, 115, 305–313. doi: 10.1037/0735-7044.115.2.305
  • Dharmaretnam, M., & Rogers, L. J. (2005). Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behavioural Brain Research, 162, 62–70. doi: 10.1016/j.bbr.2005.03.012
  • Diekamp, B., Prior, H., & Güntürkün, O. (1999). Functional lateralization, interhemispheric transfer and position bias in serial reversal learning in pigeons (Columba livia). Animal Cognition, 2, 187–196. doi: 10.1007/s100710050039
  • Diekamp, B., Regolin, L., Güntürkün, O., & Vallortigara, G. (2005). A left-sided visuospatial bias in birds. Current Biology, 15, R372–R373. doi: 10.1016/j.cub.2005.05.017
  • Dukas, R. (2004). Evolutionary biology of animal cognition. Annual Review of Ecology, Evolution, and Systematics, 35, 347–374. doi: 10.1146/annurev.ecolsys.35.112202.130152
  • Epp, J. R., Silva Mera, R., Köhler, S., Josselyn, S. A., & Frankland, P. W. (2016). Neurogenesis-mediated forgetting minimizes proactive interference. Nature Communications, 7, 1–8. doi: 10.1038/ncomms10838
  • Festini, S. B., & Reuter-Lorenz, P. A. (2014). Cognitive control of familiarity: Directed forgetting reduces proactive interference in working memory. Cognitive, Affective, & Behavioral Neuroscience, 14, 78–89. doi: 10.3758/s13415-013-0231-1
  • Güntürkün, O., & Kesch, S. (1987). Visual lateralization during feeding in pigeons. Behavioral Neuroscience, 101, 433–435. doi: 10.1037/0735-7044.101.3.433
  • Hartig, F. (2020). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models.
  • Judge, P. G., Evans, D. W., Schroepfer, K. K., & Gross, A. C. (2011). Perseveration on a reversal-learning task correlates with rates of self-directed behavior in nonhuman primates. Behavioural Brain Research, 222, 57–65. doi: 10.1016/j.bbr.2011.03.016
  • Kraemer, P. J., & Golding, J. M. (1997). Adaptive forgetting in animals. Psychonomic Bulletin & Review, 4, 480–491. doi: 10.3758/BF03214337
  • Lai, Z. C., Moss, M. B., Killiany, R. J., Rosene, D. L., & Herndon, J. G. (1995). Executive system dysfunction in the aged monkey: Spatial and object reversal learning. Neurobiology of Aging, 16, 947–954. doi: 10.1016/0197-4580(95)02014-4
  • Lazarowski, L., Foster, M. L., Gruen, M. E., Sherman, B. L., Case, B. C., Fish, R. E., … Dorman, D. C. (2014). Acquisition of a visual discrimination and reversal learning task by Labrador retrievers. Animal Cognition, 17, 787–792. doi: 10.1007/s10071-013-0712-1
  • Leaver, L. A., Ford, S., Miller, C. W., Yeo, M. K., & Fawcett, T. W. (2020). Learning is negatively associated with strength of left/right paw preference in wild grey squirrels (Sciurus carolinensis). Learning & Behavior, 48, 96–103. doi: 10.3758/s13420-019-00408-2
  • Lenth, R. Estimated marginal means, aka least-squares means.
  • Levine, M. (1959). A model of hypothesis behavior in discrimination learning set. Psychological Review, 66, 353–366. doi: 10.1037/h0044050
  • Levy, B. J., & Anderson, M. C. (2002). Inhibitory processes and the control of memory retrieval. Trends in Cognitive Sciences, 6, 299–305. doi: 10.1016/S1364-6613(02)01923-X
  • Liedtke, J., & Schneider, J. M. (2014). Association and reversal learning abilities in a jumping spider. Behavioural Processes, 103, 192–198. doi: 10.1016/j.beproc.2013.12.015
  • Lucon-Xiccato, T., & Bisazza, A. (2014). Discrimination reversal learning reveals greater female behavioural flexibility in guppies. Biology Letters, 10, 20140206. doi: 10.1098/rsbl.2014.0206
  • Mackintosh, N. J. (1965). Overtraining, reversal, and extinction in rats and chicks. Journal of Comparative and Physiological Psychology, 59, 31–36. doi: 10.1037/h0021620
  • Marino, L. (2017). Thinking chickens: A review of cognition, emotion, and behavior in the domestic chicken. Animal Cognition, 20, 127–147. doi: 10.1007/s10071-016-1064-4
  • Mascetti, G. G., Rugger, M., Vallortigara, G., & Bobbo, D. (2007). Monocular-unihemispheric sleep and visual discrimination learning in the domestic chick. Experimental Brain Research, 176, 70–84. doi: 10.1007/s00221-006-0595-3
  • McGrew, W. C., & Marchant, L. F. (1999). Laterality of hand use pays off in foraging success for wild chimpanzees. Primates, 40, 509–513. doi: 10.1007/BF02557586
  • McKenzie, R., Andrew, R. J., & Jones, R. B. (1998). Lateralization in chicks and hens: New evidence for control of response by the right eye system. Neuropsychologia, 36, 51–58. doi: 10.1016/S0028-3932(97)00108-5
  • Nelini, C., Bobbo, D., & Mascetti, G. G. (2012). Monocular learning of a spatial task enhances sleep in the right hemisphere of domestic chicks (Gallus gallus). Experimental Brain Research, 218, 381–388. doi: 10.1007/s00221-012-3023-x
  • Rajalakshmi, R., & Jeeves, M. A. (1965). The relative difficulty of reversal learning (reversal index) as a basis of behavioural comparisons. Animal Behaviour, 13, 203–211. doi: 10.1016/0003-3472(65)90035-7
  • Regolin, L., Garzotto, B., Rugani, R., Pagni, P., & Vallortigara, G. (2005). Working memory in the chick: Parallel and lateralized mechanisms for encoding of object- and position-specific information. Behavioural Brain Research, 157, 1–9. doi: 10.1016/j.bbr.2004.06.012
  • Regolin, L., & Vallortigara, G. (1996). Lateral asymmetries during responses to novel-coloured objects in the domestic chick: A developmental study. Behavioural Processes, 37, 67–74. doi: 10.1016/0376-6357(95)00076-3
  • Rogers, L. J. (2000). Evolution of hemispheric specialization: Advantages and disadvantages. Brain and Language, 73, 236–253. doi: 10.1006/brln.2000.2305
  • Rogers, L. J. (2008). Development and function of lateralization in the avian brain. Brain Research Bulletin, 76, 235–244. doi: 10.1016/j.brainresbull.2008.02.001
  • Rogers, L. J. (2017). A matter of degree: Strength of brain asymmetry and behaviour. Symmetry, 9, 57. doi: 10.3390/sym9040057
  • Rogers, L. J., Zucca, P., & Vallortigara, G. (2004). Advantages of having a lateralized brain. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, S420–S422. doi: 10.1098/rsbl.2004.0200
  • Rugani, R., Fontanari, L., Simoni, E., Regolin, L., & Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society B: Biological Sciences, 276, 2451–2460. doi: 10.1098/rspb.2009.0044
  • Rumbaugh, D. M. (1971). Evidence of qualitative differences in learning processes among primates. Journal of Comparative and Physiological Psychology, 76, 250–255. doi: 10.1037/h0031401
  • Rymer, T. L., Pillay, N., & Schradin, C. (2013). Extinction or survival? Behavioral flexibility in response to environmental change in the African striped mouse rhabdomys. Sustainability, 5, 163–186. doi: 10.3390/su5010163
  • Shettleworth, S. J. (2009). Cognition, evolution, and behavior. Oxford: Oxford University Press.
  • Squier, L. H. (1969). Reversal learning Improvement in the fish Astronotus ocellatus (Oscar). Psychonomic Science, 14, 143–144. doi: 10.3758/BF03332753
  • Strang, C. G., & Sherry, D. F. (2014). Serial reversal learning in bumblebees (Bombus impatiens). Animal Cognition, 17, 723–734. doi: 10.1007/s10071-013-0704-1
  • Tello-Ramos, M. C., Branch, C. L., Kozlovsky, D. Y., Pitera, A. M., & Pravosudov, V. V. (2019). Spatial memory and cognitive flexibility trade-offs: To be or not to be flexible, that is the question. Animal Behaviour, 147, 129–136. doi: 10.1016/j.anbehav.2018.02.019
  • Tommasi, L., & Vallortigara, G. (2001). Encoding of geometric and landmark information in the left and right hemispheres of the avian brain. Behavioral Neuroscience, 115, 602–613. doi: 10.1037/0735-7044.115.3.602
  • Vallortigara, G., Cailotto, M., & Zanforlin, M. (1990). Sex differences in social reinstatement motivation of the domestic chick (Gallus gallus) revealed by runway tests with social and nonsocial reinforcement. Journal of Comparative Psychology, 104, 361–367. doi: 10.1037/0735-7036.104.4.361
  • van Horik, J. O., & Emery, N. J. (2018). Serial reversal learning and cognitive flexibility in two species of neotropical parrots (Diopsittaca nobilis and Pionites melanocephala). Behavioural Processes, 157, 664–672. doi: 10.1016/j.beproc.2018.04.002
  • Warren, J. M., Brookshire, K. H., Ball, G. G., & Reynolds, D. V. (1960). Reversal learning by white Leghorn chicks. Journal of Comparative and Physiological Psychology, 53, 371–375. doi: 10.1037/h0048127
  • Whiteside, M. A., Bess, M. M., Frasnelli, E., Beardsworth, C. E., Langley, E. J., van Horik, J. O., & Madden, J. R. (2018). Low survival of strongly footed pheasants may explain constraints on lateralization. Scientific Reports, 8, 13791. doi: 10.1038/s41598-018-32066-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.