Publication Cover
Laterality
Asymmetries of Brain, Behaviour, and Cognition
Volume 26, 2021 - Issue 1-2: Laterality in animals
227
Views
0
CrossRef citations to date
0
Altmetric
Original Papers

Are cerebral and behavioural lateralization related to anxiety-like traits in the animal model zebrafish (Danio rerio)?

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 144-162 | Received 19 Oct 2020, Accepted 18 Nov 2020, Published online: 17 Dec 2020

References

  • Agrillo, C., & Dadda, M. (2007). Discrimination of the larger shoal in the poeciliid fish Girardinus falcatus. Ethology Ecology and Evolution, 19, 145–157.
  • Aizawa, H., Amo, R., & Okamoto, H. (2011). Phylogeny and ontogeny of the habenular structure. Frontiers in Neuroscience, 5, 138. doi:10.3389/fnins.2011.00138
  • Ampatzis, K., & Dermon, C. R. (2016). Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio). Behavioural Brain Research, 312, 385–393.
  • Bandelow, B., & Michaelis, S. (2015). Epidemiology of anxiety disorders in the 21st century. Dialogues in Clinical Neuroscience, 17, 327–335.
  • Barlow, D. H. (1991). Disorders of emotion. Psychological Inquiry, 2, 58–71.
  • Bisazza, A., & De Santi, A. (2003). Lateralization of aggression in fish. Behavioural Brain Research, 141, 131–136.
  • Bisazza, A., Facchin, L., & Vallortigara, G. (2000). Heritability of lateralization in fish: Concordance of right-left asymmetry of detour responses between parents and offspring. Neuropsychologia, 38, 907–912.
  • Bisazza, A., Sovrano, V. A., & Vallortigara, G. (2001). Consistency among different tasks of left-right asymmetries in lines of fish originally selected for opposite direction of lateralization in a detour task. Neuropsychologia, 39, 1077–1085.
  • Blaser, R. E., & Rosemberg, D. B. (2012). Measures of anxiety in zebrafish (Danio rerio): Dissociation of black/white preference and novel tank test. PLoS ONE, 7, e36931.
  • Bonati, B., Csermely, D., Lopez, P., & Martin, J. (2010). Lateralization in the escape behaviour of the common wall lizard (Podarcis muralis). Behavioural Brain Research, 207, 1–6.
  • Brandler, W. M., & Paracchini, S. (2014). The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Medicine, 20, 83–90.
  • Chakravarty, S., Reddy, B. R., Sudhakar, S. R., Saxena, S., Das, T., Meghah, V., … Idris, M. M. (2013). Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: Altered brain proteome profile implicates mitochondrial dysfunction. PLoS ONE, 8, e63302.
  • Champagne, D. L., Hoefnagels, C. C. M., de Kloet, R. E., & Richardson, M. K. (2010). Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behavioural Brain Research, 214, 332-342
  • Chen, J., Lei, L., Tian, L., Hou, F., Roper, C., Ge, X., … Huang, C. (2018). Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): An aquatic model for autism. Neurotoxicology and Teratology, 66, 8–16.
  • Clayman, C. L., Malloy, E. J., Kearns, D. N., & Connaughton, V. P. (2017). Differential behavioral effects of ethanol pre-exposure in male and female zebrafish (Danio rerio). Behavioural Brain Research, 335, 174–184.
  • Concha, M. L., Burdine, R. D., Russell, C., Schier, A. F., & Wilson, S. W. (2000). A nodal signalling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron, 28, 399–409.
  • Concha, M. L., & Wilson, S. W. (2001). Asymmetry in the epithalamus of vertebrates. Journal of Anatomy, 199, 63–84.
  • Dadda, M., Domenichini, A., Piffer, L., Argenton, F., & Bisazza, A. (2010). Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behavioural Brain Research, 206, 208–215.
  • Dharmaretnam, M., & Rogers, L. J. (2005). Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behavioural Brain Research, 162, 62–70.
  • Domenichini, A., Dadda, M., Facchin, L., Bisazza, A., & Argenton, F. (2011). Isolation and genetic characterization of mother-of-snow-white, a maternal effect allele affecting laterality and lateralized behaviors in zebrafish. PLoS ONE, 6, e25972.
  • Dreosti, E., Vendrell Llopis, N., Carl, M., Yaksi, E., & Wilson, S. W. (2014). Left-right asymmetry is required for the habenulae to respond to both visual and olfactory stimuli. Current Biology, 24, 440–445.
  • Duboc, V., Dufourcq, P., Blader, P., & Roussigné, M. (2015). Asymmetry of the brain: Development and Implications. Annual Review of Genetics, 49, 647–672.
  • Duboué, E. R., & Halpern, M. E. (2017). Genetic and transgenic approaches to study zebrafish brain asymmetry and lateralized behavior. In L. J. Rogers, & G. Vallortigara (Eds.), Lateralized brain functions. Neuromethods (pp. 553–589). New York, NY: Humana Press.
  • Duboué, E. R., Hong, E., Eldred, K., & Halpern, M. (2017). Left habenular activity attenuates fear responses in larval zebrafish. Current Biology, 14, 2154–2162.
  • Engels, A. S., Heller, W., Mohanty, A., Herrington, J. D., Banich, M. T., Webb, A. G., et al. (2007). Specificity of regional brain activity in anxiety types during emotion processing. Psychophysiology, 44, 352–363.
  • Facchin, L., Bisazza, A., & Vallortigara, G. (1999). What causes lateralization of detour behavior in fish? Evidence for asymmetries in eye use. Behavioural Brain Research, 103, 229–234
  • Facchin, L., Burgess, H. A., Siddiqi, M., Granato, M., & Halpern, M. E. (2009). Determining the function of zebrafish epithalamic asymmetry. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1021–1032.
  • Facchin, L., Duboué, E. R., & Halpern, M. E. (2015). Disruption of epithalamic left-right asymmetry increases anxiety in zebrafish. Journal of Neuroscience, 35, 15847–15859.
  • Filgueiras, C. C., Abreu-Villac, Y., Krahe, T. E., & Manhaes, A. C. (2006). Unilateral hemispherectomy at adulthood asymmetrically affects immobile behavior of male Swiss mice. Behavioural Brain Research, 172, 33–38.
  • Fontana, B. D., Cleal, M., Clay, J. M., & Parker, M. O. (2019a). Zebrafish (Danio rerio) behavioral laterality predicts increased short-term avoidance memory but not stress-reactivity responses. Animal Cognition, 22, 1051–1061.
  • Fontana, B. D., Cleal, M., & Parker, M. O. (2019b). Female adult zebrafish (Danio rerio) show higher levels of anxiety-like behavior than males, but do not differ in learning and memory capacity. European Journal of Neuroscience, 14588.
  • Fontana, B. D., Mezzomo, N. J., Kalueff, A. V., & Rosemberg, D. B. (2018). The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Experimental Neurology, 299, 157–171.
  • Gamse, J. T., Kuan, Y. S., Macurak, M., Brösamle, C., Thisse, B., Thisse, C., & Halpern, M. E. (2005). Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target. Development, 132, 4869–4881.
  • Gamse, J. T., Thisse, C., Thisse, B., & Halpern, M. E. (2003). The parapineal mediates left-right asymmetry in the zebrafish diencephalon. Development, 130, 1059–1068.
  • Gatto, E., Agrillo, C., Brown, C., & Dadda, M. (2019). Individual differences in numerical skills are influenced by brain lateralization in guppies (Poecilia reticulata). Intelligence, 74, 12–17.
  • Gatto, E., Lucon-Xiccato, T., Savaşçi, B. B., Dadda, M., & Bisazza, A. (2017). Experimental setting affects the performance of guppies in a numerical discrimination task. Animal Cognition, 20, 187–198.
  • Güntürkün, O., Ströckens, F., & Ocklenburg, S. (2020). Brain lateralization: A comparative perspective. Physiological Reviews, 100, 1019–1063.
  • Heller, W., Nitschke, J. B., Etienne, M. A., & Miller, G. A. (1997). Patterns of regional brain activity differentiate types of anxiety. Journal of Abnormal Psychology, 106, 376–385.
  • Heuts, B. A. (1999). Lateralization of trunk muscle volume, and lateralization of swimming turns of fish responding to external stimuli. Behavioural Processes, 47, 113–124.
  • Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., … Stemple, D. K. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496, 498–503.
  • Ijaz, S., & Hoffman, E. J. (2016). Zebrafish: A translational model system for studying neuropsychiatric disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 55, 746–748.
  • Kalin, N. H., Larson, C., Shelton, S. E., & Davidson, R. J. (1998). Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behavioral Neuroscience, 112, 286–292.
  • Kalueff, A. V., Stewart, A. M., & Gerlai, R. (2014). Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences, 35, 63–75.
  • Kozol, R. A., Cukier, H. N., Zou, B., Mayo, V., De Rubeis, S., Cai, G., … Dallman, J. E. (2015). Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Human Molecular Genetics, 24, 4006–4023.
  • Kuan, Y. S., Yu, H. H., Moens, C. B., & Halpern, M. E. (2007). Neuropilin asymmetry mediates a left-right difference in habenular connectivity. Development, 134, 857–865.
  • Leliveld, L. M. C., Langbeina, J., & Puppe, B. (2013). The emergence of emotional lateralization: Evidence in non-human vertebrates and implications for farm animals. Applied Animal Behaviour Science, 145, 1–14.
  • Liang, J. O., Etheridge, A., Hantsoo, L., Rubinstein, A. L., Nowak, S. J., Izpisua Belmonte, J. C., & Halpern, M. E. (2000). Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development, 127, 5101–5112.
  • Lindell, A. K., & Hudry, K. (2013). Atypicalities in cortical structure, handedness, and functional lateralization for language in autism spectrum disorders. Neuropsychology Review, 23, 257–270.
  • Lippolis, G., Bisazza, A., Rogers, L. J., & Vallortigara, G. (2002). Lateralisation of predator avoidance responses in three species of toads. Laterality: Asymmetries of Body, Brain and Cognition, 7, 163–183.
  • Long, S, & Ahmad, N. (2003). The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development, 130, 2303–2316.
  • Manuel, R., Gorissen, M., Roca, C. P., Zethof, J., van de Vis, H., Flik, G., & van den Bos, R. (2014). Inhibitory avoidance learning in zebrafish (Danio rerio): effects of shock intensity and unraveling differences in task performance. Zebrafish, 11, 341–352.
  • Maximino, C., de Brito, T. M., da Silva Batista, A. W., Herculano, A. M., Morato, S., & GouveiaJrA. (2010a). Measuring anxiety inzebrafish: A critical review. Behavioural Brain Research, 214, 157–171.
  • Maximino, C., de Brito, T. M., de Mattos Dias, C. G., GouveiaJr.A., & Morato, S. (2010b). Scototaxis as anxiety-like behavior in fish. Nature Protocols, 5, 209–216.
  • Maximino, C., de Brito, T. M., Moraes, F. D., Oliveira, F. V. C., Taccolini, I. B., Pereira, P. M., … Gouveia, A. (2007). A comparative analysis of the preference for dark environments in five teleosts. International Journal of Comparative Psychology, 20, 351–367.
  • Mazzotti, G. A., & Boere, V. (2009). The right ear but not the left ear temperature is related to stress-induced cortisolaemia in the domestic cat (Felis catus). Laterality: Asymmetries of Body, Brain and Cognition, 14, 196–204.
  • Miklosi, A., & Andrew, R. J. (1999). Right eye use associated with decision to bite in zebrafish. Behavioural Brain Research, 105, 199–205.
  • Miletto Petrazzini, M. E., Pecunioso, A., Dadda, M., & Agrillo, C. (2019). The impact of brain lateralization and anxiety-like behaviour in an extensive operant conditioning task in zebrafish (Danio rerio). Symmetry, 11, 1395, doi:10.3390/sym11111395
  • Miletto Petrazzini, M. E., Sovrano, V. A., Vallortigara, G., & Messina, A. (2020). Brain and Behavioral asymmetry: A Lesson from fish. Frontiers in Neuroanatomy, 14, 11, doi:10.3389/fnana.2020.00011
  • Montgomery, K. C. (1955). The relation between fear induced by novel stimulation and exploratory behavior. Journal of Comparative and Physiological Psychology, 48, 254–260.
  • Ocklenburg, S., & Güntürkün, O. (2012). Hemispheric asymmetries: The comparative view. Frontiers in Psychology, 3, 5, doi:10.3389/fpsyg.2012.00005
  • Parker, M. O., Millington, M. E., Combe, F. J., & Brennan, C. H. (2012). Housing conditions differentially affect physiological and behavioural stress responses of zebrafish, as well as the response to anxiolytics. PLoS ONE, 7(4), e34992.
  • Phillips, R. E., & Youngren, O. M. (1986). Unilateral kainic acid lesions reveal dominance of right archistriatum in avian fear behavior. Brain Research, 377, 216–220.
  • Piato, A. L., Capiotti, K. M., Tamborski, A. R., Oses, J. P., Barcellos, L. J., Bogo, M. R., … Bonan, C. D. (2011). Unpredictable chronic stress model in zebrafish (Danio rerio): Behavioral and physiological responses. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 561–567.
  • Rihel, J., & Schier, A. F. (2012). Behavioral screening for neuroactive drugs in zebrafish. Developmental Neurobiology, 72, 373–385.
  • Rogers, L. J. (2014). Asymmetry of brain and behavior in animals: Its development, function, and human relevance. Genesis, 52, 555–571.
  • Rogers, L. J., & Vallortigara, G. (2015). When and why did brains break symmetry? Symmetry, 7, 2181–2194.
  • Rogers, L. J., & Vallortigara, G. (2017). Lateralized brain functions: Methods in human and Non-human species. New York, NY: Humana Press.
  • Rosemberg, D. B., Rico, E. P., Mussulini, B. H., Piato, A. L., Calcagnotto, M. E., Bonan, C. D., … Oliveira, D. L. (2011). Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLoS ONE, 6, e19397.
  • Roussigné, M., Bianco, I. H., Wilson, S. W., & Blader, P. (2009). Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei. Development, 136, 1549–1557.
  • Roussigné, M., Blader, P., & Wilson, S. W. (2012). Breaking symmetry: The zebrafish as a model for understanding left-right asymmetry in the developing brain. Developmental Neurobiology, 72, 269–281.
  • Royer, C., Delcroix, N., Leroux, E., Alary, M., Razafimandimby, A., Brazo, P., … Dollfus, S. (2016). Functional and structural brain asymmetries in patients with schizophrenia and bipolar disorders. Schizophrenia Research, 161, 210–214.
  • Séguret, A., Collignon, B., & Halloy, J. (2016). Strain differences in the collective behaviour of zebrafish (Danio rerio) in heterogeneous environment. Royal Society Open Science, 3, 160451.
  • Singer, M. L., Oreschak, K., Rhinehart, Z., & Robison, B. D. (2016). Anxiolytic effects of fluoxetine and nicotine exposure on exploratory behavior in zebrafish. PeerJ, 4, e2352.
  • Siniscalchi, M., Sasso, R., Pepe, A. M., Vallortigara, G., & Quaranta, A. (2010). Dogs turn left to emotional stimuli. Behavioural Brain Research, 208, 516–521.
  • Sovrano, V. A., & Andrew, R. J. (2006). Eye use during viewing a reflection: Behavioural lateralisation in zebrafish larvae. Behavioural Brain Research, 167, 226–231.
  • Sovrano, V. A., Bisazza, A., & Vallortigara, G. (2001). Lateralization of response to social stimuli in fishes: A comparison between different methods and species. Physiology & Behavior, 74, 237–244.
  • Spence, R., Magurran, A. E., & Smith, C. (2011). Spatial cognition in zebrafish: The role of strain and rearing environment. Animal Cognition, 14, 607–612.
  • Stewart, A. M., Braubach, O., & Spitsbergen, J. (2014). Zebrafish models for translational neuroscience research: From tank to bedside. Trends in Neurosciences, 37, 264–278.
  • Stewart, A., Gaikwad, S., Kyzar, E., Green, J., Roth, A., & Kalueff, A. V. (2012). Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology, 62, 135–143.
  • Sullivan, R. M, & Gratton, A. (1999). Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. Journal of Neuroscience, 19, 2834–2840.
  • Tomaz, C., Verburg, M. S., Boere, V., Pianta, T. F., & Belo, M. (2003). Evidence of hemispheric specialization in marmosets (Callithrix penicillata) using tympanic membrane thermometry. Brazilian Journal of Medical and Biological Research, 36, 913–918.
  • Vallortigara, G., & Rogers, L. J. (2020). A function for the bicameral mind. Cortex, 124, 274–285.
  • Vignet, C., Bégout, M., Péan, S., Lyphout, L., Leguay, D., & Cousin, X. (2013). Systematic screening of behavioral responses in two zebrafish strains. Zebrafish, 10, 365–375.
  • Vital, C., & Martins, E. P. (2011). Strain differences in zebrafish (Danio rerio) social roles and their impact on group task performance. Journal of Comparative Psychology, 125, 278–285.
  • Volkova, K., Caspillo, N. R., Porseryd, T., Hallgren, S., Dinnetz, P., & Porsch-Hallstrom, I. (2015). Developmental exposure of zebrafish (Danio rerio) to 17alpha-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny. Hormones and Behavior, 73, 30–38.
  • Watkins, J., Miklosi, A., & Andrew, R. J. (2004). Early asymmetries in the behaviour of zebrafish larvae. Behavioural Brain Research, 151, 177–183.
  • Young, E. J., & Williams, C. L. (2013). Differential activation of amygdala Arc expression by positive and negatively valenced emotional learning conditions. Frontiers in Behavioral Neuroscience, 7, 191, doi:10.3389/fnbeh.2013.00191
  • Ziv, L., Muto, A., Schoonheim, P. J., Meijsing, S. H., Strasser, D., Ingraham, H. A., … Baier, H. (2013). An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Molecular Psychiatry, 18, 681–691.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.