Publication Cover
Laterality
Asymmetries of Brain, Behaviour, and Cognition
Volume 26, 2021 - Issue 1-2: Laterality in animals
205
Views
0
CrossRef citations to date
0
Altmetric
Original Papers

The commissura anterior compensates asymmetries of visual representation in pigeons

ORCID Icon &
Pages 213-237 | Received 20 Dec 2020, Accepted 09 Feb 2021, Published online: 23 Feb 2021

References

  • Aboitiz, F., & Montiel, J. (2003). One hundred million years of interhemispheric communication: The history of the corpus callosum. Brazilian Journal of Medical and Biological Research, 36, 409–420.
  • Atoji, Y. (2011). Immunohistochemical localization of vesicular glutamate transporter 2 (vGluT2) in the central nervous system of the pigeon (Columba livia). The Journal of Comparative Neurology, 519, 2887–2905.
  • Binggeli, R. L., & Paule, W. J. (1969). The pigeon retina: Quantitative aspects of the optic nerve and ganglion cell layer. The Journal of Comparative Neurology, 137, 1–18.
  • Bingman, V. P., Siegel, J. J., Gagliardo, A., & Erichsen, J. T. (2006). Representing the richness of avian spatial cognition: Properties of a lateralized homing pigeon hippocampus. Reviews in the Neurosciences, 17, 17–28.
  • Chiandetti, C., Lemaire, B., Versace, E., & Vallortigara, G. (2017). Early- and late-light embryonic stimulation modulates similarly chicks’ ability to filter out distractors. Symmetry, 9, 84.
  • Chiarello, C., & Maxfield, L. (1996). Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. Brain and Cognition, 30, 81–108.
  • Cook, N. D. (1984). Callosal inhibition. The key to the brain code. Behavioral Science, 29, 98–110.
  • Deng, C., & Rogers, L. J. (2002 Aug 21). Prehatching visual experience and lateralization in the visual Wulst of the chick. Behavioural Brain Research, 134(1-2), 375–385.
  • Diekamp, B., Prior, H., & Güntürkün, O. (1999). Lateralization of serial color reversal learning in pigeons (Columba livia). Animal Cognition, 2, 187–196.
  • Diekamp, B., Vallortigara, G., Güntürkün, O., & Regolin, L. (2005). Avian neuropsychology: Left-sided visuospatial bias in birds parallels the human condition. Current Biology, 15, R372–R373.
  • Durstewitz, D., Kröner, S., & Güntürkün, O. (1999). The dopaminergic innervation of the avian telencephalon. Progress in Neurobiology, 59, 161–195.
  • Durstewitz, D., Kröner, S., Hemmings, H. C. Jr., & Güntürkün, O. (1998). The dopaminergic innervation of the pigeon telencephalon: Distribution of DARPP-32 and coocurrence with glutamate decarboxylase and tyrosine hydroxylase. Neuroscience, 83, 763–779.
  • Folta, K., Diekamp, B., & Güntürkün, O. (2004). Asymmetrical modes of visual bottom-up and top-down integration in the thalamic nucleus rotundus of pigeons. Journal of Neuroscience, 24, 9475–9485.
  • Folta, K., Troje, N., & Güntürkün, O. (2007). Timing of ascending and descending visual signals predicts the response mode of single cells in the thalamic nucleus rotundus of the pigeon (Columba livia). Brain Research, 1132, 100–109.
  • Gazzaniga, M. S. (2005). Forty-five years of split-brain research and still going strong. Nature Reviews Neuroscience, 6, 653–659.
  • Gehring, D., Wiltschko, W., Güntürkün, O., & Wiltschko, R. (2012). Development of lateralization of the magnetic compass in a migratory bird. Proc. Royal Soc. London B, 279, 4230–4235.
  • Gülbetekin, E., Güntürkün, O., Dural, S., & Çetinkaya, H. (2009). Visual asymmetries in quails (coturnix coturnix japonica) retain a lifelong potential for plasticity. Behavioral Neuroscience, 123, 815–821.
  • Güntürkün, O. (1985). Lateralization of visually controlled behavior in pigeons. Physiology & Behavior, 34(4), 575–577.
  • Güntürkün, O. (1997a). Avian visual lateralization – a review. NeuroReport, 8, iii–ixi.
  • Güntürkün, O. (1997b). Morphological asymmetries of the tectum opticum in the pigeon. Experimental Brain Research, 116, 561–566.
  • Güntürkün, O., & Böhringer, P. G. (1987). Reversal of visual lateralization after midbrain commissurotomy in pigeons. Brain Research, 408, 1–5.
  • Güntürkün, O., Hellmann, B., Melsbach, G., & Prior, H. (1998). Asymmetries of representation in the visual system of pigeons. NeuroReport, 9, 4127–4130.
  • Güntürkün, O., & Kischkel, K. F. (1992). Is visual lateralization sex-dependent in pigeons? Behavioural Brain Research, 47, 83–87.
  • Güntürkün, O., Stacho, M., & Ströckens, F. (2017). The brains of reptiles and birds. In J. Kaas (Ed.), Evolution of nervous systems 2e (vol. 1, pp. 171–221). Oxford: Elsevier.
  • Güntürkün, O., Ströckens, F., & Ocklenburg, S. (2020). Brain lateralization: A comparative perspective. Physiological Reviews, 100(3), 1019–1063.
  • Hanes, D. P., Thompson, K. G., & Schall, J. D. (1995). Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Experimental Brain Research, 103, 85–96.
  • Herold, C., Paulitschek, C., Palomero-Gallagher, N., Güntürkün, O., & Zilles, K. (2018). Transmitter receptors reveal segregation of the arcopallium / amygdala complex in pigeons (Columba livia). Journal of Comparative Neurology, 526, 439–466.
  • Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited - comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32, 989–999.
  • Karten, H., & Hodos, W. (1967). A stereotaxic Atlas of the Brain of the pigeon (Columbia Livia). Baltimore: Johns Hopkins Press.
  • Keysers, C., Diekamp, B., & Güntürkün, O. (2000). Evidence for asymmetres in the phasic intertectal interactions in the pigeon (Columba livia) and their potential role in brain lateralisation. Brain Research, 852, 406–413.
  • Koshiba, M., Nakamura, S., Deng, C., & Rogers, L. J. (2003). Light-dependent development of asymmetry in the ipsilateral and contralateral thalamofugal visual projections of the chick. Neuroscience Letters, 336, 81–84.
  • Legéndy, C. R., & Salcman, M. (1985). Bursts and recurrences of bursts in the spike trains of pontaneously active striate cortex neurons. Journal of Neurophysiology, 53(4), 926–939.
  • Lemaire, B. S., Viblanc, V. A., & Jozet-Alves, C. (2019). Sex-specific lateralization during aggressive interactions in breeding king penguins. Ethology, 125, 439–449.
  • Letzner, S., Manns, M., & Güntürkün, O. (2020). Light-dependent development of the tectorotundal projection in pigeons. European Journal of Neuroscience, 52, 3561–3571.
  • Letzner, S., Simon, A., & Güntürkün, O. (2016). Connectivity and neurochemistry of the commissura anterior of the pigeon (Columba livia). Journal of Comparative Neurology, 524, 343–361.
  • Loconsole, M., Perovic, S., & Regolin, L. (2020). A leftward bias negatively correlated with performance is selectively displayed by domestic chicks during rule reversal (not acquisition). Laterality, 22, 1–18.
  • Manns, M., & Güntürkün, O. (1999). Monocular deprivation alters the direction of functional and morphological asymmetries in the pigeon‘s visual system. Behavioral Neuroscience, 113, 1257–1266.
  • Manns, M., & Güntürkün, O. (2003). Light experience induces differential asymmetry patterns of GABA- and parvalbumine-positive cells in the pigeon’s visual midbrain. Journal of Chemical Neuroanatomy, 25, 249–259.
  • Manns, M., & Römling, J. (2012). The impact of asymmetrical light input on cerebral hemispheric specialization and interhemispheric cooperation. Nature Communications, 3, 696.
  • Martin, G. R. (2009). What is binocular vision for? A birds’ eye view. Journal of Vision, 9, 14–14.
  • Morandi-Raikova, A., Danieli, K., Lorenzi, E., Rosa-Salva, O., & Mayer, U. (2021). Anatomical asymmetries in the tectofugal pathway of dark-incubated domestic chicks: Rightwards lateralization of parvalbumin neurons in the entopallium. Laterality, 18, 1–23.
  • Narayanan, N. S. (2016). Ramping activity is a cortical mechanism of temporal control of action. Current Opinion in Behavioural Science, 8, 226–230.
  • Nottelmann, F., Wohlschläger, A., & Güntürkün, O. (2002). Unihemispheric memory in pigeons - knowledge, the left hemisphere is reluctant to share. Behavioural Brain Research, 133(2), 309–315.
  • Nowicka, A., & Tacikowski, P. (2011). Transcallosal transfer of information and functional asymmetry of the human brain. Laterality: Asymmetries of Body, Brain and Cognition, 16, 35–74.
  • Packheiser, J., Donoso, J. R., Cheng, S., Güntürkün, O., & Pusch, R. (2021). Trial-by-trial dynamics of reward prediction errors during extinction learning and renewal. Progress in Neurobiology, 197, 101901.
  • Phillips, K. A., Schaeffer, J., Barrett, E., & Hopkins, W. D. (2013). Performance asymmetries in tool use are associated with corpus callosum integrity in chimpanzees (Pan troglodytes). A diffusion tensor imaging study. Behavioral Neuroscience, 127, 106–113.
  • Prete, G., Fabri, M., Foschi, N., & Tommasi, L. (2016). Face gender categorization and hemispheric asymmetries. Contrasting evidence from connected and disconnected brains. Neuroscience, 339, 210–218.
  • Prior, H., Wiltschko, R., Stapput, K., Güntürkün, O., & Wiltschko, W. (2004). Visual lateralization and homing in pigeons. Behavioural Brain Research, 154, 301–310.
  • Pritz, M. B., Mead, W. R., & Northcutt, R. G. (1970). The effects of Wulst ablations on color, brightness and pattern discrimination in pigeons (Columba livia). The Journal of Comparative Neurology, 140, 81–100.
  • Putnam, M. C., Wig, G. S., Grafton, S. T., Kelley, W. M., & Gazzaniga, M. S. (2008). Structural organization of the corpus callosum predicts the extent and impact of cortical activity in the nondominant hemisphere. Journal of Neuroscience, 28, 2912–2918.
  • Regolin, L., Garzotto, B., Rugani, R., Pagni, P., & Vallortigara, G. (2005). Working memory in the chick: Parallel and lateralized mechanisms for encoding of object- and position-specific information. Behavioural Brain Research, 157, 1–9.
  • Regolin, L., Marconato, F., & Vallortigara, G. (2003). Hemispheric differences in the recognition of partly occluded objects by newly hatched domestic chicks. Anim. Cogn, 7, 162–170.
  • Rochon-Duvigneaud, A. (1943). Les yeux et la vision des vertebres. Paris: Masson.
  • Rogers, L. J. (2008). Development and function of lateralization in the avian brain. Brain Research Bulletin, 76, 235–244.
  • Rogers, L. J. (2012). The two hemispheres of the avian brain: Their differing roles in perceptual processing and the expression of behavior. Journal of Ornithology, 153, 61–74.
  • Rogers, L. J. (2020). Steroid hormones influence light-dependent development of visual projections to the forebrain (commentary on Letzner et al., 2020). European Journal of Neuroscience, 52, 3572–3574.
  • Rogers, L. J., Andrew, R. J., & Johnston, A. N. B. (2007). Light experience and the development of behavioural lateralization in chicks – III. Learning to distinguish pebbles from grains. Behavioural Brain Research, 177, 61–69.
  • Rogers, L. J., & Deng, C. (1998). Light experience and lateralization of the two visual pathways in the chick. Behavioural Brain Research, 98, 277–287.
  • Rogers, L. J., & Kaplan, G. (2006). An eye for a predator: Lateralization in birds, with particular reference to the Australian magpie. In Y. B. Maleashichev & A. W. Deckel (Eds.), Behavioral and morphological asymmetries in vertebrates (pp. 47–57). Molecular Biology Intelligence Unit, Georgetown: Landes Bioscience.
  • Rogers, L. J., & Sink, H. S. (1988). Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Experimental Brain Research, 70, 378–384.
  • Rogers, L. J., Zucca, P., & Vallortigara, G. (2004). Advantages of having a lateralized brain. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, S420–S422.
  • Rugani, R., Salva, O. R., Regolin, L., & Vallortigara, G. (2015a). Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behavioural Brain Research, 290, 1–7.
  • Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015b). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347, 534–536.
  • Salva, O. R., Regolin, L., & Vallortigara, G. (2007). Chicks discriminate human gaze with their right hemisphere. Behavioural Brain Research, 177, 15–21.
  • Shimazaki, H., & Shinomoto, S. (2010). Kernel bandwidth optimization in spike rate estimation. Journal of Computational Neuroscience, 29, 171–182.
  • Skiba, M., Diekamp, B., & Güntürkün, O. (2002). Embryonic light stimulation induces different asymmetries in visuoperceptual and visuomotor pathways of pigeons. Behavioural Brain Research, 134, 149–156.
  • Skiba, M., Diekamp, B., Prior, H., & Güntürkün, O. (2000). Lateralized interhemispheric transfer of color cues: Evidence of dynamic coding principles of visual lateralization in pigeons. Brain and Language, 73, 254–273.
  • Stacho, M., Herold, C., Rook, N., Wagner, H., Axer, M., Amunts, K., & Güntürkün, O. (2020). A cortex-like canonical circuit in the avian forebrain. Science, 25(6511), 369.
  • Stacho, M., Ströckens, F., Xiao, Q., & Güntürkün, O. (2016). Functional organization of telencephalic visual association fields in pigeons. Behavioural Brain Research, 303, 93–102.
  • Ströckens, F., Freund, N., Manns, M., Ocklenburg, S., & Güntürkün, O. (2013). Visual asymmetries and the ascending thalamofugal pathway in pigeons. Brain Structure and Function, 218, 1197–1209.
  • Tehovnik, E. J., & Sommer, M. A. (1997). Effective spread and timecourse of neural inactivation caused by lidocaine injection in monkey cerebral cortex. Journal of Neuroscience Methods, 74, 17–26.
  • Templeton, J. J., McCracken, B. G., Sher, M., & Mountjoy, D. J. (2014). An eye for beauty: Lateralized visual stimulation of courtship behavior and mate preferences in male zebra finches, taeniopygia guttata. Behavioural Processes, 102, 33–39.
  • Tommasi, L., & Vallortigara, G. (2001). Encoding of geometric and landmark information in the left and right hemispheres of the avian brain. Behavioral Neuroscience, 115, 602–613.
  • Ünver, E., Xiao, Q., & Güntürkün, O. (2019). Meta-control in pigeons (Columba livia) and the role of the commissura anterior. Symmetry, 11, 124.
  • Valencia-Alfonso, C.-E., Verhaal, J., & Güntürkün, O. (2009). Ascending and descending mechanisms of visual lateralisation in pigeons. Philosophical Transactions of the Royal Society of London B, 364, 955–963.
  • Vallortigara, G. (2000). Comparative neuropsychology of the dual brain: A stroll through animals’ left and right perceptual worlds. Brain and Language, 73, 189–219.
  • Vallortigara, G., Regolin, L., Bartolomiol, G., & Tommasi, L. (1996). Lateral asymmetries due to preferences in eye use during visual discrimination learning in chicks. Behavioural Brain Research, 74, 135–143.
  • van der Knaap, L. J., & van der Ham, I. J. M. (2011). How does the corpus callosum mediate interhemispheric transfer? A review. Behavioural Brain Research, 223, 211–221.
  • Ventolini, N., Ferrero, N. A., Sponza, S., Della Chiesa, A., Zucca, P., & Vallortigara, G. (2005). Laterality in the wild: Preferential hemifield use during predatory and sexual behaviour in the black-winged stilt. Animal Behaviour, 69, 1077–1084.
  • Verhaal, J., Kirsch, J. A., Vlachos, I., Manns, M., & Güntürkün, O. (2012). Lateralized reward-associated visual discrimination in the avian entopallium. European Journal of Neuroscience, 35, 1337–1343.
  • Watanabe, S. (1980). Conditional discrimination training and interocular transfer in pigeons. Behavioural Brain Research, 1(2), 125–137.
  • Weis, S., Hausmann, M., Stoffers, B., Vohn, R., Kellermann, T., & Sturm, W. (2008). Estradiol modulates functional brain organization during the menstrual cycle: An analysis of interhemispheric inhibtion. Journal of Neuroscience, 28, 13401–13410.
  • Weissman, D. H., & Banich, M. T. (2000). The cerebral hemispheres cooperate to perform complex but not simple tasks. Neuropsychology, 14, 41–59.
  • Witelson, S. F., & Nowakowski, R. S. (1991). Left out axons make men right. A hypothesis for the origin of handedness and functional asymmetry. Neuropsychologia, 29, 327–333.
  • Wynne, B., & Güntürkün, O. (1995). The dopaminergic innervation of the forebrain of the pigeon (Columba livia): a study with antibodies against tyrosine hydroxylase and dopamine. Journal of Comparative Neurology, 357, 446–464.
  • Xiao, Q., & Güntürkün, O. (2009). Natural split brains? Lateralized memory for task contingencies in pigeons. Neuroscience Letters, 458, 75–78.
  • Xiao, Q., & Güntürkün, O. (2018). Asymmetrical commissural control of the subdominant hemisphere in pigeons. Cell Reports, 25, 1171–1180.e3.
  • Yamazaki, Y., Aust, U., Huber, L., Hausmann, M., & Güntürkün, O. (2007). Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the “human” concept. Cognition, 104, 315–344.
  • Yazgan, M. Y., Wexler, B. E., Kinsbourne, M., Peterson, B., & Leckman, J. F. (1995). Functional significance of individual variations in callosal area. Neuropsychologia, 33, 769–779.
  • Zeier, H., & Karten, H. J. (1971). The archistriatum of the pigeon: Organization of afferent and efferent connections. Brain Research, 31, 313–326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.