Publication Cover
Laterality
Asymmetries of Brain, Behaviour, and Cognition
Volume 26, 2021 - Issue 5
407
Views
3
CrossRef citations to date
0
Altmetric
Articles

Hand preference and Mathematical Learning Difficulties: New data from Greece, the United Kingdom, and Germany and two meta-analyses of the literature

ORCID Icon, , , , &
Pages 485-538 | Received 14 Dec 2020, Accepted 18 Mar 2021, Published online: 06 Apr 2021

References

  • References marked with an asterisk (*) indicate studies included in the meta-analyses.
  • American Psychiatric Association (APA). (1994). Diagnostic and statistical manual of mental disorders: DSM-IV (4th ed.). Washington, DC: American Psychiatric Association.
  • American Psychiatric Association (APA). (2013). Diagnostic and statistical manual of mental disorders (DSM-5). Arlington, VA: American Psychiatric Pub.
  • *Ashkenazi, S., & Henik, A. (2010). A disassociation between physical and mental number bisection in developmental dyscalculia. Neuropsychologia, 48(10), 2861–2868. doi:10.1016/j.neuropsychologia.2010.05.028
  • Ashkenazi, S., Rosenberg-Lee, M., Tenison, C., & Menon, V. (2012). Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia. Developmental Cognitive Neuroscience, 2, S152–S166. doi:10.1016/j.dcn.2011.09.006
  • Ayyildiz, N., Beyer, F., Üstün, S., Kale, H. E., Çalışır, Ö. M., Uran-Şenol, P., ... Villringer, A. (2019). Structural brain connectivity differences of children with and without dyscalculia. paEpsy conference.
  • Bastos, J. A., Cecato, A. M. T., Martins, M. R. I., Grecca, K. R. R., & Pierini, R. (2016). The prevalence of developmental dyscalculia in Brazilian public school system. Arquivos de Neuro-Psiquiatria, 74(3), 201–206. doi:10.1590/0004-282X20150212
  • Benbow, C. P. (1988). Sex differences in mathematical reasoning ability in intellectually talented preadolescents: Their nature, effects, and possible causes. Behavioral and Brain Sciences, 11(02), 169–183. doi:10.1017/S0140525X00049244
  • Bishop, D. V., Watt, H., & Papadatou-Pastou, M. (2009). An efficient and reliable method for measuring cerebral lateralization during speech with functional transcranial Doppler ultrasound. Neuropsychologia, 47(2), 587–590. doi:10.1016/j.neuropsychologia.2008.09.013
  • Bower, B. (1985). The left hand of math and verbal talent. Science News, 127(17), 263.
  • Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, J., … Davey Smith, G. (2013). Cohort profile: The ‘children of the 90s’—The index offspring of the Avon Longitudinal Study of Parents and Children. International Journal of Epidemiology, 42(1), 111–127. doi:10.1093/ije/dys064
  • Brandler, W. M., Morris, A. P., Evans, D. M., Scerri, T. S., Kemp, J. P., Timpson, N. J., … Stein, J. (2013). Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genetics, 9(9), e1003751.
  • Brandler, W. M., & Paracchini, S. (2014). The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Medicine, 20(2), 83–90.
  • *Bucca, A. (2018). Dominanzamanuale, disturbi del linguaggio e difficoltà di apprendimentodella L2/manual dominance, language disorders and L2 learning difficulties. RivistaItaliana di Filosofia del Linguaggio. Retrieved from http://160.97.104.70/index.php/rifl/article/view/444
  • Buenaventura Castillo, C., Lynch, A. G., & Paracchini, S. (2020). Different laterality indexes are poorly correlated with one another but consistently show the tendency of males and females to be more left-and right-lateralized, respectively. Royal Society Open Science, 7(4), 191700. doi:10.1098/rsos.191700
  • Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 455–468). New York, NY: Psychology Press.
  • Capano, L., Minden, D., Chen, S. X., Schachar, R. J., & Ickowicz, A. (2008). Mathematical learning disorder in school-age children with attention-deficit hyperactivity disorder. The Canadian Journal of Psychiatry, 53(6), 392–399. doi:10.1177/070674370805300609
  • Chu, F. W., VanMarle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212. doi:10.1016/j.jecp.2015.01.006
  • Cimpian, J. R., Lubienski, S. T., Timmer, J. D., Makowski, M. B., & Miller, E. K. (2016). Have gender gaps in math closed? Achievement, teacher perceptions, and learning behaviors across two ECLS-K cohorts. AERA Open, 2(4), 2332858416673617.
  • Cobley, S., McKenna, J., Baker, J., & Wattie, N. (2009). How pervasive are relative age effects in secondary school education? Journal of Educational Psychology, 101(2), 520. doi:10.1037/a0013845
  • Cohen, Z. Z., Gliksman, Y., & Henik, A. (2019). Modal-independent pattern recognition deficit in developmental dyscalculia adults: Evidence from tactile and visual enumeration. Neuroscience, 423, 109–121. doi:10.1016/j.neuroscience.2019.10.023
  • Corballis, M. C., Hattie, J., & Fletcher, R. (2008). Handedness and intellectual achievement: An even-handed look. Neuropsychologia, 46(1), 374–378. doi:10.1016/j.neuropsychologia.2007.09.009
  • Corey, D. M., Hurley, M. M., & Foundas, A. L. (2001). Right and left handedness defined: A multivariate approach using hand preference and hand performance measures. Cognitive and Behavioral Neurology, 14(3), 144–152.
  • Crow, T. J., Crow, L. R., Done, D. J., & Leask, S. (1998). Relative hand skill predicts academic ability: Global deficits at the point of hemispheric indecision. Neuropsychologia, 36(12), 1275–1282. doi:10.1016/S0028-3932(98)00039-6
  • Cuellar-Partida, G., Tung, J. Y., Eriksson, N., Albrecht, E., Aliev, F., Andreassen, O. A., … Boyd, H. A. (2020). Genome-wide association study identifies 48 common genetic variants associated with handedness. Nature Human Behaviour, 1–10. doi:10.1038/s41562-020-00956-y
  • Dassonville, P., Zhu, X. H., Ugurbil, K., Kim, S. G., & Ashe, J. (1997). Functional activation in motor cortex reflects the direction and the degree of handedness. Proceedings of the National Academy of Sciences, 94(25), 14015–14018.
  • Dennis, M. S., Sorrells, A. M., & Falcomata, T. S. (2016). Effects of two interventions on solving basic fact problems by second graders with mathematics learning disabilities. Learning Disability Quarterly, 39(2), 95–112. doi:10.1177/0731948715595943
  • Desoete, A., Roeyers, H., & De Clercq, A. (2004). Children with mathematics learning disabilities in Belgium. Journal of Learning Disabilities, 37(1), 50–61. doi:10.1177/00222194040370010601
  • Devine, A., Soltész, F., Nobes, A., Goswami, U., & Szűcs, D. (2013). Gender differences in developmental dyscalculia depend on diagnostic criteria. Learning and Instruction, 27, 31–39. doi:10.1016/j.learninstruc.2013.02.004
  • De Visscher, A., & Noël, M. P. (2013). A case study of arithmetic facts dyscalculia caused by a hypersensitivity-to-interference in memory. Cortex, 49(1), 50–70. doi:10.1016/j.cortex.2012.01.003
  • Domellöf, E., Johansson, A. M., & Rönnqvist, L. (2011). Handedness in preterm born children: A systematic review and a meta-analysis. Neuropsychologia, 49(9), 2299–2310. doi:10.1016/j.neuropsychologia.2011.04.033
  • Drigas, A., & Pappas, M. (2015). ICT based screening tools and etiology of dyscalculia. International Journal of Engineering Pedagogy (iJEP), 5(3), 61–66. doi:10.3991/i-jep/article/view/4735
  • Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463. doi:10.1111/j.0006-341X.2000.00455.x
  • Egger, M., & Smith, G. D. (1997). Meta-analysis: Potentials and promise. British Medical Journal, 315, 1371–1374.
  • Evans, T. M., & Ullman, M. T. (2016). An extension of the procedural deficit hypothesis from developmental language disorders to mathematical disability. Frontiers in Psychology, 7. doi:10.3389/fpsyg.2016.01318
  • Floris, D. L., Lai, M. C., Auer, T., Lombardo, M. V., Ecker, C., Chakrabarti, B., … Suckling, J. (2016). Atypically rightward cerebral asymmetry in male adults with autism stratifies individuals with and without language delay. Human Brain Mapping, 37(1), 230–253. doi:10.1002/hbm.23023
  • Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey Smith, G., … Ring, S. (2013). Cohort profile: The Avon longitudinal study of parents and children: ALSPAC mothers cohort. International Journal of Epidemiology, 42(1), 97–110.
  • Galesic, M., Garcia-Retamero, R., & Gigerenzer, G. (2009). Using icon arrays to communicate medical risks: Overcoming low numeracy. Health Psychology, 28(2), 210. doi:10.1037/a0014474
  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. doi:10.1177/00222194040370010201
  • Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24(4), 411–429. doi:10.1016/j.cogdev.2009.10.001
  • Gómez-Velázquez, F. R., Vélez-Pérez, H., Espinoza-Valdez, A., Romo-Vazquez, R., Salido-Ruiz, R. A., Ruiz-Stovel, V., … Berumen, G. (2017). Electrophysiological dynamic brain connectivity during symbolic magnitude comparison in children with different mathematics achievement levels. NeuroReport, 28(3), 174–178. doi:10.1097/WNR.0000000000000722
  • Gonzalez, C. L., & Goodale, M. A. (2009). Hand preference for precision grasping predicts language lateralization. Neuropsychologia, 47(14), 3182–3189. doi:10.1016/j.neuropsychologia.2009.07.019
  • González-Garrido, A. A., Gómez-Velázquez, F. R., Salido-Ruiz, R. A., Espinoza-Valdez, A., Vélez-Pérez, H., Romo-Vazquez, R., … Berumen, G. (2018). The analysis of EEG coherence reflects middle childhood differences in mathematical achievement. Brain and Cognition, 124, 57–63. doi:10.1016/j.bandc.2018.04.006
  • Grabner, R. H., & Ansari, D. (2010). Promises and potential pitfalls of a ‘cognitive neuroscience of mathematics learning’. ZDM Mathematics Education, 42(6), 655–660. doi:10.1007/s11858-010-0283-4
  • Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F., & Neuper, C. (2009). Fact learning in complex arithmetic and figural-spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30(9), 2936–2952. doi:10.1002/hbm.20720
  • *Greiffenstein, M. F., & Baker, W. J. (2002). Neuropsychological and psychosocial correlates of adult arithmetic deficiency. Neuropsychology, 16(4), 451–458. doi:10.1037/0894-4105.16.4.451
  • Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). Developmental dyscalculia: Prevalence and demographic features. Developmental Medicine & Child Neurology, 38(1), 25–33. doi:10.1111/j.1469-8749.1996.tb15029.x
  • Gundogan, N. U., Kiziltan, E., Aydin, L., & Ogus, E. (2016). Effects of mental activity on hand skill rate performance ability among second grader medical students. Open Access Library Journal, 3(01), 1–6. doi:10.4236/oalib.1102275
  • Güntürkün, O., & Ocklenburg, S. (2017). Ontogenesis of lateralization. Neuron, 94(2), 249–263.
  • Hein, J., Bzufka, M. W., & Neumärker, K. J. (2000). The specific disorder of arithmetic skills. Prevalence studies in a rural and an urban population sample and their clinico-neuropsychological validation. European Child & Adolescent Psychiatry, 9, S87–S101. doi:10.1007/s007870070012
  • Hesesport. (2015). Tap Test Pro (Version 1.0.0) [Mobile application software]. Retrieved from https://play.google.com/store/apps/details?id=com.hesesport.taptestpro&hl=de
  • Higgins, J., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327, 557–560.
  • Hoffmann, D., Mussolin, C., Martin, R., & Schiltz, C. (2014). The impact of mathematical proficiency on the number-space association. PLoS One, 9(1), e85048. doi:10.1371/journal.pone.0085048
  • Hsieh, M. T., Lai, M. C., Lin, K. M., & Huang, C. W. (2017). Late-onset non lesional non dominant frontal lobe seizures presenting as ictal dyscalculia. The Kaohsiung Journal of Medical Sciences, 33(1), 52–54. doi:10.1016/j.kjms.2016.08.005
  • Huber, S., Nuerk, H. C., Reips, U. D., & Soltanlou, M. (2017). Individual differences influence two-digit number processing, but not their analog magnitude processing: A large-scale online study. Psychological Research, 1–21. doi:10.1007/s00426-017-0964-5
  • Hunter, J. E., & Schmidt, F. L. (1990). Dichotomization of continuous variables: The implications for meta-analysis. Journal of Applied Psychology, 75(3), 334–349. doi:10.1037/0021-9010.75.3.334
  • IBM Corp. Released. (2017). IBM SPSS statistics for windows, version 25.0. Armonk, NY: IBM Corp.
  • Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in children of very low birth weight. Brain, 124(9), 1701–1707. doi:10.1093/brain/124.9.1701
  • Isaacs, K. L., Barr, W. B., Nelson, P. K., & Devinsky, O. (2006). Degree of handedness and cerebral dominance. Neurology, 66(12), 1855–1858. doi:10.1212/01.wnl.0000219623.28769.74
  • Iuculano, T., & Cohen Kadosh, R. (2014). Preliminary evidence for performance enhancement following parietal lobe stimulation in developmental dyscalculia. Frontiers in Human Neuroscience, 8, 38. doi:10.3389/fnhum.2014.00038
  • *Jastrzebski, N. R., Crewther, S. G., & Crewther, D. P. (2015). Mathematical impairment associated with high-contrast abnormalities in change detection and magnocellular visual evoked response. Experimental Brain Research, 233(10), 3039–3046. doi:10.1007/s00221-015-4373-y
  • Johnston, D. W., Nicholls, M. E., Shah, M., & Shields, M. A. (2009). Nature’s experiment? Handedness and early childhood development. Demography, 46(2), 281–301. doi:10.1353/dem.0.0053
  • Johnston, D. W., Nicholls, M. E., Shah, M., & Shields, M. A. (2013). Handedness, health and cognitive development: Evidence from children in the National Longitudinal Survey of Youth. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(4), 841–860. doi:10.1111/j.1467-985X.2012.01074.x
  • Jovanović, G., Jovanović, Z., Banković-Gajić, J., Nikolić, A., Svetozarević, S., & Ignjatović-Ristić, D. (2013). The frequency of dyscalculia among primary school children. Psychiatria Danubina, 25(2), 170–174. doi:10.1353/dem.0.0053
  • *Jovanović, G., Purić, B., & Ignjatović-Ristić, D. (2014). Influence of dominant laterality limbs and senses on dyscalculia. MedicinskiCasopis, 48(1), 7–11. doi:10.5937/mckg48-3905
  • Karagiannakis, G., Baccaglini-Frank, A., & Papadatos, Y. (2014). Mathematical learning difficulties subtypes classification. Frontiers in Human Neuroscience, 8, 57. doi:10.3389/fnhum.2014.00057
  • Kaufman, A. S. & Kaufman, N. L. (2015). Kaufman assessment battery for children-2 (KABC-II) (P. Melchers & M. Melchers, Eds.). Göttingen: Hogrefe.
  • Kaufmann, L., Nuerk, H.-C., Graf, M., Krinzinger, H., Delazer, M., & Willmes, K. (2009). TEDI-MATH. Test zurErfassungnumerisch-rechnerischerFertigkeitenvom kindergarten bis zur 3. Klasse [Test for assessment of numerical and calculation skills from preschool to third grade]. Bern: Hans Huber.
  • Kawaguchi, D. (2011). Actual age at school entry, educational outcomes, and earnings. Journal of the Japanese and International Economies, 25(2), 64–80. doi:10.1016/j.jjie.2009.02.002
  • Kessels, R. P. C., van Zandvoort, M. J. E., Postma, A., Kappelle, L. J., & de Haan, E. H. F. (2000). The corsi block-tapping task: Standardization and normative data. Applied Neuropsychology, 7(4), 252–258. doi:10.1207/S15324826AN0704
  • Khedr, E. M., Hamed, E., Said, A., & Basahi, J. (2002). Handedness and language cerebral lateralization. European Journal of Applied Physiology, 87(4), 469–473. doi:10.1007/s00421-002-0652-y
  • Knecht, S., Dräger, B., Deppe, M., Bobe, L., Lohmann, H., Flöel, A., … Henningsen, H. (2000). Handedness and hemispheric language dominance in healthy humans. Brain, 123(12), 2512–2518. doi:10.1093/brain/123.12.2512
  • Koerte, I. K., Willems, A., Muehlmann, M., Moll, K., Cornell, S., Pixner, S., … Schulte-Körne, G. (2016). Mathematical abilities in dyslexic children: A diffusion tensor imaging study. Brain Imaging and Behavior, 10(3), 781–791. doi:10.1007/s11682-015-9436-y
  • Koontz, K. L. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2(1), 1–24. doi:10.1080/135467996387525
  • Kosc, L. (1974). Developmental dyscalculia. Journal of Learning Disabilities, 7(3), 164–177. doi:10.1177/002221947400700309
  • Koumoula, A., Tsironi, V., Stamouli, V., Bardani, I., Siapati, S., Graham, A., … von Aster, M. (2004). An epidemiological study of number processing and mental calculation in Greek schoolchildren. Journal of Learning Disabilities, 37(5), 377–388. doi:10.1177/00222194040370050201
  • *Kovas, Y., Giampietro, V., Viding, E., Ng, V., Brammer, M., Barker, G. J., … Plomin, R. (2009). Brain correlates of non-symbolic numerosity estimation in low and high mathematical ability children. PLoS One, 4(2), e4587. doi:10.1371/journal.pone.0004587
  • *Kucian, K. (2018). Developmental Dyscalculia. Unpublished raw data.
  • *Kucian, K., Ashkenazi, S. S., Hänggi, J., Rotzer, S., Jäncke, L., Martin, E., & von Aster, M. (2014). Developmental dyscalculia: A disconnection syndrome? Brain Structure and Function, 219(5), 1721–1733. doi:10.1007/s00429-013-0597-4
  • *Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage, 57(3), 782–795. doi:10.1016/j.neuroimage.2011.01.070
  • Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: A functional MRI study. Behavioral and Brain Functions: BBF, 2, 31–31. doi:10.1186/1744-9081-2-31
  • Kucian, K., Loenneker, T., Martin, E., & von Aster, M. (2011). Non-symbolic numerical distance effect in children with and without developmental dyscalculia: A parametric fMRI study. Developmental Neuropsychology, 36(6), 741–762. doi:10.1080/87565641.2010.549867
  • Kumar, S., Voracek, M., & Singh, M. (2020). The effects of hand preference and sex on right-left asymmetry in dorsal digit lengths among adults and children. Early Human Development, 153, 105293. doi:10.1016/j.earlhumdev.2020.105293
  • Lafay, A., Macoir, J., & St-Pierre, M. C. (2018). Impairment of arabic-and spoken-number processing in children with mathematical learning disability. Journal of Numerical Cognition, 3(3), 620–641. doi:10.5964/jnc.v3i3.123
  • *Lafay, A., St-Pierre, M. C., & Macoir, J. (2017). The mental number line in dyscalculia: Impaired number sense or access from symbolic numbers? Journal of Learning Disabilities, 50(6), 672–683. doi:10.1177/0022219416640783
  • Lewis, K. E., & Fisher, M. B. (2016). Taking stock of 40 years of research on mathematical learning disability: Methodological issues and future directions. Journal for Research in Mathematics Education, 47, 338–371. doi:10.5951/jresematheduc.47.4.0338
  • Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136(6), 1123. doi:10.1037/a0021276
  • Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714–726. doi:10.1111/desc.12152
  • Markou, P., Ahtam, B., & Papadatou-Pastou, M. (2017). Elevated levels of atypical handedness in autism: Meta-analyses. Neuropsychology Review, 27(3), 258–283. doi:10.1007/s11065-017-9354-4
  • Martins, I. P., Ferreira, J., & Borges, L. (1999). Acquired procedural dyscalculia associated to a left parietal lesion in a child. Child Neuropsychololy, 5, 265–273. doi:10.1076/0929-7049
  • Mazoyer, B., Zago, L., Jobard, G., Crivello, F., Joliot, M., Perchey, G., … Tzourio-Mazoyer, N. (2014). Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS One, 9(6), e101165.
  • Mazzocco, M. M., & Thompson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research & Practice, 20(3), 142–155. doi:10.1007/s11881-003-0011-7
  • *McCaskey, M. R. (2018a). Longitudinal data. Unpublished raw data.
  • *McCaskey, M. R. (2018b). Longitudinal data. Unpublished raw data.
  • McCaskey, U., von Aster, M., Maurer, U., Martin, E., O’Gorman Tuura, R., & Kucian, K. (2018). Longitudinal brain development of numerical skills in typically developing children and children with developmental dyscalculia. Frontiers in Human Neuroscience, 11, 629. doi:10.3389/fnhum.2017.00629
  • McCaskey, U., von Aster, M., O’Gorman Tuura, R., & Kucian, K. (2017). Adolescents with developmental dyscalculia do not have a generalized magnitude deficit–processing of discrete and continuous magnitudes. Frontiers in Human Neuroscience, 11, 102. doi:10.3389/fnhum.2017.00102
  • McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74(3), 240–260. doi:10.1006/jecp.1999.2516
  • McManus, I. C., Murray, B., Doyle, K., & Baron-Cohen, S. (1992). Handedness in childhood autism shows a dissociation of skill and preference. Cortex, 28, 373–381. doi:10.1016/S0010-9452(13)80147-5
  • Michel, G. F., Babik, I., Nelson, E. L., Campbell, J. M., & Marcinowski, E. C. (2018). Evolution and development of handedness: An Evo–Devo approach. Progress in Brain Research, 238, 347–374.
  • Michels, L., O’Gorman, R., & Kucian, K. (2018). Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention. Developmental Cognitive Neuroscience, 30, 291–303. doi:10.1016/j.dcn.2017.03.005
  • Miller, H., & Bichsel, J. (2004). Anxiety, working memory, gender, and math performance. Personality and Individual Differences, 37(3), 591–606.
  • Miller, Z. A., Rosenberg, L., Santos-Santos, M. A., Stephens, M., Allen, I. E., Hubbard, H. I., … Gorno-Tempini, M. L. (2018). Prevalence of mathematical and visuospatial learning disabilities in patients with posterior cortical atrophy. JAMA Neurology, 75(6), 728–737. doi:10.1001/jamaneurol.2018.0395
  • Mohammadi, H., & Papadatou-Pastou, M. (2019). Cerebral laterality as assessed by hand preference and developmental stuttering. Laterality: Asymmetries of Body, Brain and Cognition, (in press). doi:10.1080/1357650X.2019.1621329
  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Prisma Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. doi:10.1371/journal.pmed.1000097
  • Morsanyi, K., van Bers, B. M. C. W., McCormack, T., & McGourty, J. (2018). The prevalence of specific learning disorder in mathematics and comorbidity with other developmental disorders in primary school-age children. British Journal of Psychology, 109, 917–940. doi:10.1111/bjop.12322
  • Moser, I., Vibert, D., Caversaccio, M. D., & Mast, F. W. (2017a). Acute peripheral vestibular deficit increases redundancy in random number generation. Experimental Brain Research, 235(2), 627–637. doi:10.1007/s00221-016-4829-8
  • Moser, I., Vibert, D., Caversaccio, M. D., & Mast, F. W. (2017b). Impaired math achievement in patients with acute vestibular neuritis. Neuropsychologia, 107, 1–8. doi:10.1016/j.neuropsychologia.2017.10.032
  • Newbury, D. F., Monaco, A. P., & Paracchini, S. (2014). Reading and language disorders: The importance of both quantity and quality. Genes (Basel), 5, 285–309. doi:10.3390/genes5020285
  • Nicholls, M. E., Chapman, H. L., Loetscher, T., & Grimshaw, G. M. (2010). The relationship between hand preference, hand performance, and general cognitive ability. Journal of the International Neuropsychological Society, 16(4), 585–592.
  • Ntolka, E., & Papadatou-Pastou, M. (2017). Right-handers have negligibly higher IQ scores than left-handers: Systematic review and meta-analyses. Neuroscience & Biobehavioral Reviews, 84, 376–393. doi:10.1016/j.neubiorev.2017.08.007
  • Nunes, T., Bryant, P., Barros, R., & Sylva, K. (2012). The relative importance of two different mathematical abilities to mathematical achievement. British Journal of Educational Psychology, 82(1), 136–156. doi:10.1111/j.2044-8279.2011.02033.x
  • O’Connell, M. (2018). The power of cognitive ability in explaining educational test performance, relative to other ostensible contenders. Intelligence, 66, 122–127. doi:10.1016/j.intell.2017.11.011
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi:10.1016/0028-3932(71)90067-4
  • Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716.
  • Papadatou-Pastou, M. (2011). Handedness and language lateralization: Why are we right-handed and left-brained. Hellenic Journal of Psychology, 8, 248–265.
  • Papadatou-Pastou, M. (2018). Handedness and cognitive ability: Using meta-analysis to make sense of the data. Progress in Brain Research, 238, 179–206.
  • Papadatou-Pastou, M., Martin, M., & Munafò, M. R. (2013). Measuring hand preference: A comparison among different response formats using a selected sample. Laterality, 18(1), 68–107. doi:10.1080/1357650X.2011.628794
  • Papadatou-Pastou, M., Martin, M., Munafo, M. R., & Jones, G. V. (2008). Sex differences in left-handedness: A meta-analysis of 144 studies. Psychological Bulletin, 134(5), 677–699. doi:10.1037/a0012814
  • Papadatou-Pastou, M., Ntolka, E., Schmitz, J., Martin, M., Munafò, M. R., Ocklenburg, S., & Paracchini, S. (2020). Human handedness: A meta-analysis. Psychological Bulletin, 146(6), 481–524. doi:10.1037/bul0000229
  • Papadatou-Pastou, M., & Sáfár, A. (2016). Handedness prevalence in the deaf: Meta-analyses. Neuroscience & Biobehavioral Reviews, 60, 98–114. doi:10.1016/j.neubiorev.2015.11.013
  • Papadatou-Pastou, M., & Tomprou, D. M. (2015). Intelligence and handedness: Meta-analyses of studies on intellectually disabled, typically developing, and gifted individuals. Neuroscience & Biobehavioral Reviews, 56, 151–165. doi:10.1016/j.neubiorev.2015.06.017
  • Pettigrew, K. A., Fajutrao Valles, S. F., Moll, K., Northstone, K., Ring, S., Pennell, C., … Simpson, N. H. (2015). Lack of replication for the myosin-18B association with mathematical ability in independent cohorts. Genes, Brain and Behavior, 14(4), 369–376. doi:10.1111/gbb.12213
  • Pinel, P., & Dehaene, S. (2010). Beyond hemispheric dominance: Brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere. Journal of Cognitive Neuroscience, 22(1), 48–66. doi:10.1162/jocn.2009.21184
  • *Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), R1042–R1043. doi:10.1016/j.cub.2007.10.013
  • Prichard, E., Propper, R. E., & Christman, S. D. (2013). Degree of handedness, but not direction, is a systematic predictor of cognitive performance. Frontiers in Psychology, 4, 9. doi:10.3389/fpsyg.2013.00009
  • Pritchard, V. E., Malone, S. A., Burgoyne, K., Burgoyne, K., Heron-Delaney, M., & Bishop, D. V. M. (2019). Stage 1 registered report: The relationship between handedness and language ability in children [version 1; peer review: 2 approved]. Wellcome Open Research, 4, 30. doi:10.12688/wellcomeopenres.15077.1
  • Ramaa, S., & Gowramma, I. (2002). A systematic procedure for identifying and classifying children with dyscalculia among primary school children in India. Dyslexia, 8(2), 67–85. doi:10.1002/dys.214
  • R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org
  • Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., … Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48(1), 123. doi:10.1037/a0025356
  • Rodriguez, A., Kaakinen, M., Moilanen, I., Taanila, A., McGough, J. J., Loo, S., & Järvelin, M. R. (2010). Mixed-handedness is linked to mental health problems in children and adolescents. Pediatrics, 125(2), e340–e348. doi:10.1542/peds.2009-1165
  • Rosenberg, P. B. (1989). Perceptual-motor and attentional correlates of developmental dyscalculia. Annals of Neurology, 26(2), 216–220. doi:10.1002/ana.410260206
  • Rosenthal, R., & Di Matteo, M. R. (2001). Meta-analysis: Recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52, 59–82. doi:10.1146/annurev.psych.52.1.59
  • Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & Von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47(13), 2859–2865. doi:10.1016/j.neuropsychologia.2009.06.009
  • *Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage, 39(1), 417–422. doi:10.1016/j.neuroimage.2007.08.045
  • *Rubinsten, O., & Henik, A. (2006). Double dissociation of functions in developmental dyslexia and dyscalculia. Journal of Educational Psychology, 98(4), 854–867. doi:10.1037/0022-0663.98.4.854
  • Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: Combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51.
  • Sala, G., Signorelli, M., Barsuola, G., Bolognese, M., & Gobet, F. (2017). The relationship between handedness and mathematics is non-linear and is moderated by gender, age, and type of task. Frontiers in Psychology, 8, 948. doi:10.3389/fpsyg.2017.00948
  • Salvador, L. D. S., Moura, R., Ferreira, F. O., Andrade, P. M. O., Carvalho, M. R. S., & Haase, V. G. (2019). The Mini-Mental Examination for Children (MMC): Evidence of validity for children with learning difficulties. Dementia & Neuropsychologia, 13(4), 427–435. doi:10.1590/1980-57642018dn13-040010
  • Scerri, T. S., Morris, A. P., Buckingham, L. L., Newbury, D. F., Miller, L. L., Monaco, A. P., … Paracchini, S. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70(3), 237–245. doi:10.1016/j.biopsych.2011.02.005
  • Scharoun, S. M., & Bryden, P. J. (2014). Hand preference, performance abilities, and hand selection in children. Frontiers in Psychology, 5, 82. doi:10.3389/fpsyg.2014.00082
  • Semenza, C., Delazer, M., Bertella, L., Grana, A., Mori, I., Conti, F. M., … Mauro, A. (2006). Is math lateralised on the same side as language? Right hemisphere aphasia and mathematical abilities. Neuroscience Letters, 406(3), 285–288. doi:10.1016/j.neulet.2006.07.063
  • Shalev, R. S., Manor, O., & Gross-Tsur, V. (1997). Neuropsychological aspects of developmental dyscalculia. Mathematical Cognition, 3(2), 105–120. doi:10.1080/135467997387434
  • *Shalev, R. S., Manor, O., Amir, N., Wertman-Elad, R., & Gross-Tsur, V. (1995). Developmental dyscalculia and brain laterality. Cortex, 31(2), 357–365. doi:10.1016/S0010-9452(13)80368-1
  • Sherman, J. (1979). Cognitive performance as a function of sex and handedness: An evaluation of the Levy hypothesis. Psychology of Women Quarterly, 3(4), 378–390. doi:10.1111/j.1471-6402.1979.tb00687.x
  • Sideridis, G., Antoniou, F., Simos, P., & Mouzaki, A. (2015). Raven’s colour progressive matrices, Greek standardization. Athina: Motibo.
  • *Skeide, M. A., Evans, T. M., Mei, E. Z., Abrams, D. A., & Menon, V. (2018). Neural signatures of co-occurring reading and mathematical difficulties. Developmental Science, e12680. doi:10.1111/desc.12680
  • Somers, M., Aukes, M. F., Ophoff, R. A., Boks, M. P., Fleer, W., Kahn, R. S., & Sommer, I. E. (2015). On the relationship between degree of hand-preference and degree of language lateralization. Brain and Language, 144, 10–15.
  • Sommer, I. E. C., Ramsey, N. F., Mandl, R. C. W., & Kahn, R. S. (2002). Language lateralization in monozygotic twin pairs concordant and discordant for handedness. Brain, 125(12), 2710–2718. doi:10.1093/brain/awf284
  • *Spellacy, F., & Peter, B. (1978). Dyscalculia and elements of the developmental Gerstmann syndrome in school children. Cortex, 14(2), 197–206. doi:10.1016/S0010-9452(78)80045-8
  • Spreen, O., & Gaddes, W. H. (1969). Development norms for 15 neuropsychological tests age 6 to 15. Cortex, 5, 171–191. doi:10.1016/S0010-9452(69)80028-6
  • Stanescu-Cosson, R., Pinel, P., van de Moortele, P. F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain, 123(11), 2240–2255. doi:10.1093/brain/123.11.2240
  • Steenhuis, R. E., & Bryden, M. P. (1989). Different dimensions of hand preference that relate to skilled and unskilled activities. Cortex, 25(2), 289–304. doi:10.1016/S0010-9452(89)80044-9
  • Stock, P., Desoete, A., & Roeyers, H. (2010). Detecting children with arithmetic disabilities from kindergarten: Evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. Journal of Learning Disabilities, 43(3), 250–268. doi:10.1177/0022219409345011
  • Strang, J. D., & Rourke, B. P. (1983). Concept-formation/non-verbal reasoning abilities of children who exhibit specific academic problems with arithmetic. Journal of Clinical Child Psychology, 12(1), 33–39. doi:10.1080/15374418309533110
  • Träff, U., Olsson, L., Östergren, R., & Skagerlund, K. (2016). Heterogeneity of developmental dyscalculia: Cases with different deficit profiles. Frontiers in Psychology, 7, 2000. doi:10.3389/fpsyg.2016.02000
  • Tran, U. S., & Voracek, M. (2015). Schizophrenia and mixed-handedness. The British Journal of Psychiatry, 207(2), 178–178. doi:10.1192/bjp.207.2.178
  • Triggs, W. J., Calvanio, R., Levine, M., Heaton, R. K., & Heilman, K. M. (2000). Predicting hand preference with performance on motor tasks. Cortex, 36(5), 679–689. doi:10.1016/S0010-9452(08)70545-8
  • Uomini, N. T., & Ruck, L. (2018). Manual laterality and cognition through evolution: An archeological perspective. Progress in Brain Research, 238, 295–323.
  • Verly, M., Gerrits, R., Sleurs, C., Lagae, L., Sunaert, S., Zink, I., & Rommel, N. (2018). The mis-wired language network in children with developmental language disorder: Insights from DTI tractography. Brain Imaging and Behavior, 1–12. doi:10.1007/s11682-018-9903-3
  • Vlachos, F., Andreou, E., Delliou, A., & Agapitou, P. (2013). Dyslexia and hand preference in secondary school students. Psychology & Neuroscience, 6(1), 67–72. doi:10.3922/j.psns.2013.1.10
  • von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and calculation: Varieties of developmental dyscalculia. European Child & Adolescent Psychiatry, 9(Suppl 2), 41–57. doi:10.1007/s007870070008
  • von Aster, M. (2001). Die neuropsychologischeTestbatteriefürZahlenverarbeitung und RechnenbeiKindern (ZAREKI) [The neuropsychological test battery for number processing and calculation in children (NUCALC)]. Frankfurt, Germany: Swets & Zeitliger.
  • Walker, E., Hernandez, A. V., & Kattan, M. W. (2008). Meta-analysis: Its strengths and limitations. Cleveland Clinic Journal of Medicine, 75(6), 431–439.
  • Wechsler, D. (1991). The Wechsler intelligence scale for children—third edition. San Antonio, TX: The Psychological Corporation.
  • Wechsler, D., Golombok, S., & Rust, J. (1992). WISC-III UK Wechsler intelligence scale for children: UK manual. Sidcup, UK: The Psychological Corporation.
  • White, G., Ruther, M., & Kahn, J. (2016). Educational inequality in India: An analysis of gender differences in reading and mathematics. IHDS Working Paper 2016-2.
  • Whittington, J. E., & Richards, P. N. (1991). Mathematical ability and the right-shift theory of handedness. Neuropsychologia, 29(11), 1075–1082. doi:10.1016/0028-3932(91)90077-L
  • Wiberg, A., Douaud, A., Ng, M., Al Omran, Y., Alfaro-Almagro, F., Marchini, J., … Furniss, D. (2018, October 26). Human handedness: Genetics, microtubules, neuropsychiatric diseases and brain language areas. doi:10.1101/454660
  • Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2017). Defective number sense or impaired access? Differential impairments in different subgroups of children with mathematics difficulties. Journal of Learning Disabilities, 50(1), 49–61. doi:10.1177/0022219415588851
  • Woolger, C. (2001). Wechsler intelligence scale for children-third edition (WISC-III). In Understanding psychological assessment. doi:10.1007/978-1-4615-1185-4_11.
  • *Zergiotis, A. (2004). Intervention program to improving memory and basic arithmetic skills for children with learning disabilities in Mathematics (Unpublished doctoral dissertation). National and Kapodistrian University, Athens.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.