479
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Parametric study and multi-objective crashworthiness optimisation of reinforced hexagonal honeycomb under dynamic loadings

&
Pages 495-509 | Received 13 Jan 2015, Accepted 08 Apr 2015, Published online: 07 May 2015

References

  • J.R.K. Mcfarland, Hexagonal cell structures under post-buckling axial load, AIAA J. 1 (1963), pp. 1380–1385.
  • M. Yamashita and M. Gotoh, Impact behavior of honeycomb structures with various cell specifications-numerical simulation and experiment, Int. J. Impact Eng. 32 (2005), pp. 618–630.
  • X. Fan, I. Verpoest, and D. Vandepitte, Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb, J. Sandwich Struct. Mater. 8 (2006), pp. 437–458.
  • L. Aktayl, A.F. Johnson, and B.H. Kroplin, Numerical modeling of honeycomb core crush behaviour, Eng. Fract. Mech. 75 (2008), pp. 2616–2630.
  • D. Sun, W. Zhang, and Y. Wei, Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings, Compo. Struct. 92 (2010), pp. 2609–2621.
  • B. Hou, H. Zhao, S. Pattofatto, J. Liu, and Y. Li, Inertia effects on the progressive crushing of aluminium honeycombs under impact loading, Int. J. Solid Struct. 49 (2012), pp. 2754–2762.
  • Z. Bai, H. Guo, B. Jiang, F. Zhu, and L. Cao, A study on the mean crushing strength of hexagonal multi-cell thin-walled structures, Thin-Walled Struct. 80 (2014), pp. 38–45.
  • D.D. Radford, G.J. McShane, V.S. Deshpande, and N.A. Fleck, Dynamic compressive response of stainless-steel square honeycombs, J. Appl. Mech. 74 (2007), pp. 658–667.
  • K. Erami, N. Ohno, and D. Okumura, Long-wave in-plane buckling of elastoplastic square honeycombs, Int. J. Plast. 22 (2006), pp. 1569–1585.
  • N. Ohno, D. Okumura, and T. Niikawa, Long-wave buckling of elastic square honeycombs subject to in-plane biaxial compression, Int. J. Mech. Sci. 46 (2004), pp. 1697–1713.
  • S. Hou, Q. Li, and S. Long, Design optimization design of regular hexagonal thin-walled columns with crashworthiness criterion, Finite Elem. Anal. Des. 43 (2007), pp. 555–565.
  • L.J. Gibson and M.F. Ashby, Cellular solid: Structure and properties, Taylor & Francis, Cambridge, 1997.
  • Y. Liu and X. Zhang, The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs, Int. J. Impact Eng. 36 (2009), pp. 98–109.
  • S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, Crashworthiness optimization of corrugated sandwich panels, Mater. Des. 51 (2013), pp. 1071–1084.
  • Li M, R. Liu, H. Guo, and Z. Deng, A study on out-of-plane compressive properties of metal honeycombs by numerical simulation, Adv. Mater. Res. 217 (2011), pp. 723–727.
  • M. Li, Z. Deng, H. Guo, and R. Liu, Crashworthiness Analysis on Alternative Square Honeycomb Structure under Axial Loading, Chin. J. Mech. Eng. 26 (2013), pp. 784–792.
  • M. Li, Z. Deng, R. Liu, and H. Guo, Crashworthiness design optimization of metal honeycomb energy absorber used in lunar lander, Int. J. Crashworthiness 16 (2011), pp. 411–419.
  • G. Sun, G. Li, S. Zhou, H. Li, S. Hou, and Q. Li, Crashworthiness design of vehicle by using multi-objective robust optimization, Struct. Multidiscip. Optim. 4 (2011), pp. 99–110.
  • H. Kurtaran, A. Eskandarian, D. Marzougui, and N. Bedewi, Crashworthiness design optimization using successive response surface approximations, Comput. Mech. 29 (2002), pp. 409–421.
  • H. Fang, R. Rais, and Z. Liu, A comparative study of meta-modeling methods for multi objective crashworthiness optimization, Comput. Struct. 83 (2005), pp. 2121–2136.
  • S.S. Esfahlani, H. Shirvani, A. Shirvani, S. Nwaubani, H. Mebrahtu, and C. Chirwa, Hexagonal honeycomb cell optimisation by way of meta-model techniques, Int. J. Crashworthiness 3 (2013), pp. 264–275.
  • M. Li, Z. Deng, H. Guo, R. Liu, and B. Ding, Optimizing crashworthiness design of square honeycomb structure, J. Cent. South. Univ. 21 (2014), pp. 912–919.
  • J.G. Oliveira and T. Wierzbicki, Crushing analysis of rotationally symmetric plastic shells, J. Strain. Anal. Eng. Des. 17 (1982), pp. 229–236.
  • H. Yin, G. Wen, and N. Gan, Crashworthiness design for honeycomb structures under axial dynamic loading, Int. J. Comput. Methods 8 (2011), pp. 863–877.
  • T.N. Bitzer, Honeycomb technology: Materials, design, manufacturing, applications and testing, Taylor & Francis, Berlin, 1997.
  • H. Yin, G. Wen, S. Hou, and K. Chen, Crushing analysis and multi-objective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes, Mater. Des. 32 (2011), pp. 4449–4460.
  • H. Kim, New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency, Thin-Walled. Struct. 40 (2002), pp. 311–327.
  • M. Ali, A. Qamhiyah, D. Flugrad, and M. Shakoor, Theoretical and finite element study of a compact energy absorber, Adv. Eng. Software 39 (2008), pp. 95–106.
  • P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, and S. Li, Dynamic compressive strength properties of aluminum foams. Part II-‘shock’ theory and comparison with experimental data and numerical models, J. Mech. Phys. Solids 53 (2005), pp. 2206–2230.
  • S. Xu, H. Beynon, D. Ruan, and G.X. Lu, Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs, Compos. Struct. 94 (2012), pp. 2326–2236.
  • L.L. Tam and C.R. Calladine, Inertia and strain-rate effects in a simple plate-structure under impact loading, Int. J. Impact Eng. 11 (1991), pp. 349–377.
  • M. Langseth and O.S. Hopperstad. Static and dynamic axial crushing of square thin-walled aluminium extrusions, Int. J. Impact Eng. 18 (1996), pp. 949–68.
  • A.G. Hanssen, M. Langseth, and O.S. Hopperstad. Static and dynamic crushing of circular aluminum extrusions with aluminum foam filler, Int. J. Impact Eng. 24 (2000), pp. 475–507.
  • T. Wierzbicki, Crushing analysis of metal honeycombs, Int. J. Impact. Eng. 1 (1983), pp. 157–174.
  • Q. He, D. Ma, Z. Zhang, and L. Yao, Crushing analysis and crashworthiness optimization design of Reinforced Regular Hexagon Honeycomb Sandwich Panel, preprint (2015), to appear in Sci. Eng. Compos. Mater.
  • G.M. Nagel and D.P. Thambiratnam, Dynamic simulation and energy absorption of tapered tubes under impact loading, Int. J. Crashworthiness 9 (2004), pp. 389–399.
  • Z. Ahmad and D.P. Thambiratnam, Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading, Comput. Struct. 87 (2009), pp. 186–197.
  • H. Hamad and A. Al-Smadi, Space partitioning in engineering design via meta-model acceptance score distribution, Eng. Comput. 23 (2007), pp. 175–185.
  • G. Sun, G. Li, Z. Gong, G. He, and Q. Li, Radial basis functional model for multi-objective sheet metal forming optimization, Eng. Optim. 43 (2011), pp. 1351–1366.
  • R. Jin, W. Chen, and T.W. Simpson, Comparative studies of meta-modelling techniques under multiple modeling criteria, Struct. Multidiscipl. Optim. 23 (2001), pp. 1–13.
  • H. Fang, R. Rais, and Z. Liu, A comparative study of meta-modeling methods for multi objective crashworthiness optimization, Comput. Struct. 83 (2005), pp. 2121–2136.
  • C.A. Coello Coello, G.T. Pulido, and M.S. Lechuga, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evolutionary Comput. 8 (2004), pp. 256–79.
  • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Trans. Evolutionary Comput. 6 (2002), pp. 182–197.
  • J.D. Knowles and D.W. Corne, Approximating the non-dominated front using the Pareto archived evolution strategy, Evolutionary Comput. 8 (2000), pp. 149–172.
  • T. Wierzbicki and W. Abramowicz, On the crushing mechanics of thin-walled structures, J. Appl. Mech. 50 (1983), pp. 727–734.
  • C. Raquel and P. Naval, An effective use of crowding distance in multi-objective particle swarm optimization, Proceedings of the 2005 conference on genetic and evolutionary computation, Taylor & Francis, Washington, DC, 2005.
  • J.S. Park, Optimal Latin-hypercube designs for computer experiments, J. Stat. Plan. Inference 39 (1994), pp. 95–111.
  • W.E. Baker, T.C. Togami, and J.C.Weydert, Static and dynamic properties of high density metal honeycomb, Int. J. Impact Eng. 21 (1998), pp. 149–163.
  • Q. Zhou and R. Mayer, Characterization of aluminum honeycomb material failure in large deformation compression, shear, and tearing, J. Eng. Mater. Technol. 124 (2002), pp. 412–420.
  • E. Wu and W. Jiang, Axial crush of metallic honeycombs, Int. J. Impact Eng. 19 (1997), pp. 439–456.
  • A. Chawla, S. Mukherjee, D. Kumar, T. Nakatani, and M. Ueno, Prediction of crushing behavior of honeycomb structures, Int. J. Crashworthiness 8 (2003), pp. 229–235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.