135
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Structural design and self-locking performance verification of the snap-fit spatial self-locking energy absorption system under the impact loading

, , , , &
Pages 414-429 | Received 27 Sep 2022, Accepted 23 Jun 2023, Published online: 12 Sep 2023

References

  • Alghamdi A. Collapsible impact energy absorbers: an overview. Thin-Walled Struct. 2001;39(2):189–213. doi: 10.1016/S0263-8231(00)00048-3.
  • Olabi AG, Morris E, Hashmi M. Metallic tube type energy absorbers: a synopsis. Thin-Walled Struct. 2007;45(7–8):706–726. doi: 10.1016/j.tws.2007.05.003.
  • Bornstein H, Placido SD, Ryan S, et al. Effect of standoff on near-Field blast mitigation provided by Water-Filled containers. J. Appl. Mech. 2019;86(7):1–36. doi: 10.1115/1.4043258.
  • Wierzbicki T. Energy absorption of structures and materials. Int. J. Impact Eng. 2004;30(7):881–882. doi: 10.1016/j.ijimpeng.2003.12.004.
  • Abramowicz W. Thin-walled structures as impact energy absorbers. Thin-Walled Struct. 2003;41(2–3):91–107. doi: 10.1016/S0263-8231(02)00082-4.
  • Hu L, Zheng XCC, Wang G, et al. Crashworthiness improvements of multi-cell thin-walled tubes through lattice structure enhancements. Int. J. Mech. Sci. 2021;210:106731. doi: 10.1016/j.ijmecsci.2021.106731.
  • Baroutaji A, Morris E, Olabi AG. Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading. Thin-Walled Struct. 2014;82:262–277. doi: 10.1016/j.tws.2014.03.012.
  • Yu TX. Impact energy absorbing devices based upon the plastic deformation of metallic elements. Adv. Mech. 1986;16:28–39.
  • Gupta NK, Ray P. Collapse of thin-walled empty and filled square tubes under lateral loading between rigid plates. Inter. J. Crash. 1998;3(3):265–285. doi: 10.1533/cras.1998.0075.
  • Song XG, Sun GY, Li GY, et al. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct Multidisc Optim. 2013;47(2):221–231. doi: 10.1007/s00158-012-0820-6.
  • Wu F, Chen YT, Zhao SQ, et al. Compression and energy absorption characteristics of additively manufactured reticulated tubes filled with spherical reticulated shells under axial crushing. Comp Struct. 2022;288:115415. doi: 10.1016/j.compstruct.2022.115415.
  • Zhu GH, Sun GY, Yu H, et al. Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading. Inter J Mech Sci. 2018;135:458–483. doi: 10.1016/j.ijmecsci.2017.11.017.
  • Zhang Y, Xu X, Lu MH, et al. Enhance crashworthiness of composite structures using gradient honeycomb material. Inter J Crash. 2018;23(5):569–580. doi: 10.1080/13588265.2017.1367355.
  • Zarei HR, Kröger M. Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Struct. 2008;46(2):214–221. doi: 10.1016/j.tws.2007.07.01.
  • Wang YW, Ou BL, Zhu P, et al. High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface. Surf Interfaces. 2022;29:101747. doi: 10.1016/j.surfin.2022.101747.
  • Wang YH, Zhai XM. Dynamic crushing behaviors of aluminum foam filled energy absorption connectors. Int J Steel Struct. 2019;19(1):241–254. doi: 10.1007/s13296-018-0113-z.
  • Yan LL, Yu B, Han B, et al. Compressive strength and energy absorption of sandwich panels with aluminum foam-filled corrugated cores. Comp Sci Tech. 2013;86:142–148. doi: 10.1016/j.compscitech.2013.07.011.
  • Zarei H, Kröger M. Optimum honeycomb filled crash absorber design. Mater Design. 2008;29(1):193–204. doi: 10.1016/j.matdes.2006.10.013.
  • Zhang W, Xu J, Yu TX. Dynamic behaviors of bio-inspired structures: design, mechanisms, and models. Eng Struct. 2022;265:114490. doi: 10.1016/j.engstruct.2022.114490.
  • Chen JX, Xie J, Wu ZS, et al. Review of beetle forewing structures and their biomimetic applications in China: (I) On the structural colors and the vertical and horizontal cross-sectional structures. Mater Sci Eng C Mater Biol Appl. 2015;55:605–619. doi: 10.1016/j.msec.2015.05.064.
  • Yu XD, Pan LC, Chen JX, et al. Experimental and numerical study on the energy absorption abilities of trabecular–honeycomb biomimetic structures inspired by beetle elytra. J Mater Sci. 2019;54(3):2193–2204. doi: 10.1007/s10853-018-2958-0.
  • Song JF, Xu SC, Wang HX, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures. Thin-Walled Struct. 2018;125:76–88. doi: 10.1016/j.tws.2018.01.010.
  • Ha NS, Pham TM, Hao H, et al. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing. Int J Mech Sci. 2021;201:106464. doi: 10.1016/j.ijmecsci.2021.106464.
  • Wang HB, Yang JL, Liu H, et al. Internally nested circular tube system subjected to lateral impact loading. Thin-Walled Struct. 2015;91:72–81. doi: 10.1016/j.tws.2015.02.014.
  • Morris E, Olabi AG, Hashmi MSJ. Analysis of nested tube type energy absorbers with different indenters and exterior constraints. Thin-Walled Struct. 2006;44(8):872–885. doi: 10.1016/j.tws.2006.08.014.
  • Olabi AG, Morris E, Hashmi MSJ, et al. Optimised design of nested circular tube energy absorbers under lateral impact loading. Int J Mech Sci. 2008;50(1):104–116. doi: 10.1016/j.ijmecsci.2007.04.005.
  • Olabi AG, Morris E, Hashmi MSJ, et al. Optimised design of nested oblong tube energy absorbers under lateral impact loading. Int J Impact Eng. 2008;35(1):10–26. doi: 10.1016/j.ijmecsci.2007.04.005.
  • Chen Y, Qiao C, Qiu X, et al. A novel self-locked energy absorbing system. J Mech Phys Solids. 2016;87:130–149. doi: 10.1016/j.jmps.2015.11.008.
  • Qiao C, Chen YL, Wang S, et al. Theoretical analysis on the collapse of dumbbell-shaped tubes. Int J Mech Sci. 2017;123:20–33. doi: 10.1016/j.jmecsci.2017.01.031.
  • Yang KJ, Chen YL, Liu SB, et al. Internally nested self-locked tube system for energy absorption. Thin-Walled Struct. 2017;119:371–384. doi: 10.1016/j.tws.2017.06.014.
  • Yang KJ, Qiao C, Xiong F, et al. Theoretical investigation on the energy absorption of ellipse-shaped self-locked tubes. Sci China Phys Mech Astron. 2020;63(9):294611. doi: 10.1007/s11433-019-1518-9.
  • Yang KJ, Chen YL, Zhang L, et al. Shape and geometry design for self-locked energy absorption systems. Inter J Mech Sci. 2019;156:312–328. doi: 10.1016/j.ijmecsci.2019.04.006.
  • Yang KJ, Qin QH, Zhai ZR, et al. Dynamic response of self-locked energy absorption system under impact loadings. Int J Impact Eng. 2018;122:209–227. doi: 10.1016/j.ijimpeng.2018.08.011.
  • Pan JX, Zhu WY, Yang KJ, et al. Energy absorption of discretely assembled composite self-locked systems. Comp Struct. 2022;292:115686. doi: 10.1016/j.compstruct.2022.115686.
  • Chen LM, Zhang J, Du B, et al. Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load. Thin-Walled Struct. 2018;127:333–343. doi: 10.1016/j.tws.2017.10.048.
  • Zhao Y, Chen LM, Du B, et al. Bidirectional self-locked energy absorbing system: design and quasi-static compression properties. Thin-Walled Struct. 2019;144:106366. doi: 10.1016/j.tws.2019.106366.
  • Zhao Y, Zhao LM, Wu ZX, et al. Lateral crushing behavior of novel carbon fiber/epoxy composite bidirectional self-locked thin-walled tubular structure and system. Thin-Walled Struct. 2020;157:107063. doi: 10.1016/j.tws.2020.107063.
  • Liu YZ, Xiong F, Yang KJ, et al. A novel omnidirectional self-locked energy absorption system inspired by windmill. J Appl Mech. 2020;87(8):1–27. doi: 10.1115/1.4047537.
  • Wu L, Xi X, Li B, et al. Multi-Stable mechanical structural materials. Adv Eng Mater. 2018;20(2):1700599. doi: 10.1002/adem.201700599.
  • Zavadskas EK, Kaklauskas A, Turskis Z, et al. Selection of the effective dwelling house walls by applying attributes values determined at intervals. J Civil Eng Manag. 2008;14(2):85–93. doi: 10.3846/1392-3730.2008.14.3.
  • Chatterjee P, Athawale VM, Chakraborty S. Materials selection using complex proportional assessment and evaluation of mixed data methods. Mater Design. 2011;32(2):851–860. doi: 10.1016/j.matdes.2010.07.010.
  • Zhu GH, Yu Q, Zhao X, et al. On energy-bsorbing mechanisms of metal/CFRP hybrid composite columns. Polymer Comp. 2020;5:1–25. doi: 10.1002/pc.25550.
  • Zavadskas EK, Kaklauskas A, Raslanas S, et al. The application of multi-criterion methods for valuation of recreation property. Statyba. 2001;7(4):327–333. doi: 10.1080/13921525.2001.10531744.
  • Huo P, Fan XW, Yang X, et al. Design and optimization of equal gradient thin-walled tube: bionic application of antler osteon. Lat Am J Solids Struct. 2021;18(3):e365. doi: 10.1590/1679-78256406.
  • Xin CL, Xue ZQ, Tu J, et al. Handbook of common material parameters for finite element analysis[M], 2019.
  • Dutton T, Iregbu S, Sturt R, et al. The effect of forming on the crashworthiness of vehicles with hydroformed frame siderails, SAE Tech. Paper Series. 1999. doi: 10.4271/1999-01-3208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.