153
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Design and evaluation of compressive properties of 3D-printed PLA stochastic open-cell foam

ORCID Icon & ORCID Icon
Pages 468-481 | Received 01 Nov 2022, Accepted 10 Sep 2023, Published online: 09 Oct 2023

References

  • Bouchahdane K, Ouelaa N, Belaadi A. Static and fatigue compression behaviour of conventional and auxetic open-cell foam. Mech Adv Mater Struct. 2022;29(27):6154–6167. doi: 10.1080/15376494.2021.1972496.
  • Dey C, Thorat M, Sahu SN, et al. Evaluation of optimum foam density for effective design of blast absorbers. Mech Adv Mater Struct. 2022;29(3):400–407. doi: 10.1080/15376494.2020.1772416.
  • Koyama A, Suetsugu D, Fukubayashi Y, et al. Experimental study on the dynamic properties of rigid polyurethane foam in stress-controlled cyclic uniaxial tests. Constr Build Mater. 2022;321:126377. doi: 10.1016/j.conbuildmat.2022.126377.
  • Kim W-Y, Matsumoto R, Utsunomiya H. Deformation and density change of open-cell nickel foam in compression test. Mater Trans. 2017;58(10):1373–1378. doi: 10.2320/matertrans.L-M2017829.
  • Ramirez BJ, Gupta V. Energy absorption and low velocity impact response of open-cell polyurea foams. J Dyn Behav Mater. 2019;5(2):132–142. doi: 10.1007/s40870-019-00192-0.
  • Changyun L, Pengfei C, Guofa M. Effect of base materials and pore grades on mechanical properties of open-cell aluminum foam fabricated by investment casting. Ferroelectrics. 2022;596(1):95–106. doi: 10.1080/00150193.2022.2087252.
  • Rueger Z, Lakes RS. Experimental cosserat elasticity in open-cell polymer foam. Philos Mag. 2016;96(2):93–111. doi: 10.1080/14786435.2015.1125541.
  • Salmins M, Mitschang P. Bending properties of structural foams manufactured in a hot press process. Adv Manuf Polym Compos Sci. 2022;8(3):117–133. doi: 10.1080/20550340.2022.2077277.
  • Vesenjak M, Sulong MA, Krstulovíc-Opara L, et al. Dynamic compression of aluminum foam derived from infiltration casting of salt dough. Mech Mater. 2016;93:96–108. doi: 10.1016/j.mechmat.2015.10.012.
  • Hajizadeh M, Yazdani M, Vesali S, et al. An experimental investigation into the quasi-static compression behavior of open-cell aluminum foams focusing on controlling the space holder particle size. J Manuf Process. 2021;70:193–204. doi: 10.1016/j.jmapro.2021.08.043.
  • Huang Y, Xue Y, Wang X, et al. Effect of cross sectional shape of struts on the mechanical properties of aluminum based pyramidal lattice structures. Mater Lett. 2017;202:55–58. doi: 10.1016/j.matlet.2017.05.073.
  • Sathaiah S, Dubey R, Pandey A, et al. Effect of spherical and cubical space holders on the microstructural characteristics and its consequences on mechanical and thermal properties of open-cell aluminum foam. Mater Chem Phys. 2021;273:125115. doi: 10.1016/j.matchemphys.2021.125115.
  • Ghazi A, Berke P, Ehab Moustafa Kamel K, et al. Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control. Int J Eng Sci. 2019;143:92–114. doi: 10.1016/j.ijengsci.2019.06.012.
  • Alkebsi EAA, Outtas T, Almutawakel A, et al. Design of mechanically compatible lattice structures cancellous bone fabricated by fused filament fabrication of Z-ABS material. Mech Adv Mater Struct. 2023;30(11):2269–2283. doi: 10.1080/15376494.2022.2053904.
  • Ling C, Cernicchi A, Gilchrist MD, et al. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading. Mater Des. 2019;162:106–118. doi: 10.1016/j.matdes.2018.11.035.
  • Wang S, Ding Y, Yu F, et al. Crushing behavior and deformation mechanism of additively manufactured voronoi-based random open-cell polymer foams. Mater Today Commun. 2020;25:101406. doi: 10.1016/j.matdes.2018.11.035.
  • Pelanconi M, Rezaei E, Ortona A. Cellular ceramic architectures produced by hybrid additive manufacturing: a review on the evolution of their design. J Ceram Soc Japan. 2020;128(9):595–604. doi: 10.2109/jcersj2.20071.
  • Gong L, Kyriakides S, Jang W-Y. Compressive response of open-cell foams. Part I: morphology and elastic properties. Int J Solids Struct. 2005;42(5–6):1355–1379. doi: 10.1016/j.ijsolstr.2004.07.023.
  • Bensalem I, Benhizia A. Novel design of irregular closed-cell foams structures based on spherical particle inflation and evaluation of its compressive performance. Thin-Walled Struct. 2022;181:109991. doi: 10.1016/j.tws.2022.109991.
  • Sharma V, Grujovic N, Zivic F, et al. Influence of porosity on the mechanical behavior during uniaxial compressive testing on voronoi-based open-cell aluminium foam. Materials (Basel). 2019;12(7):1041. doi: 10.3390/ma12071041.
  • Zhang X, Wang R, Liu J, et al. A numerical method for the ballistic performance prediction of the sandwiched open cell aluminum foam under hypervelocity impact. Aerosp Sci Technol. 2018;75:254–260. doi: 10.1016/j.ast.2017.12.034.
  • Sotomayor OE, Tippur HV. Role of cell regularity and relative density on elastoplastic compression response of 3-D open-cell foam core sandwich structure generated using voronoi diagrams. Acta Mater. 2014;78:301–313. doi: 10.1016/j.actamat.2014.06.051.
  • Billiet M, De Schampheleire S, Huisseune H, et al. Influence of orientation and radiative heat transfer on aluminum foams in Buoyancy-induced convection. Materials (Basel). 2015;8(10):6792–6805. doi: 10.3390/ma8105340.
  • Fantini M, Curto M, De Crescenzio F. A method to design biomimetic scaffolds for bone tissue engineering based on voronoi lattices. Virtual Phys Prototyp. 2016;11(2):77–90. doi: 10.1080/17452759.2016.1172301.
  • Fantini M, Curto M. Interactive design and manufacturing of a voronoi-based biomimetic bone scaffold for morphological characterization. Int J Interact Des Manuf. 2018;12(2):585–596. doi: 10.1007/s12008-017-0416-x.
  • Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Comput-Aided Des. 1978;10(6):350–355. doi: 10.1016/0010-4485(78)90110-0.
  • Wang S, Zheng Z, Zhu C, et al. Crushing and densification of rapid prototyping polylactide foam: meso-structural effect and a statistical constitutive model. Mech Mater. 2018;127:65–76. doi: 10.1016/j.mechmat.2018.09.003.
  • Movahedi N, Linul E. Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions. Mater Lett. 2017;206:182–184. doi: 10.1016/j.matlet.2017.07.018.
  • Movahedi N, Linul E. Radial crushing response of ex-situ foam-filled tubes at elevated temperatures. Compos Struct. 2021;277:114634. doi: 10.1016/j.compstruct.2021.114634.
  • ISO13314. Mechanical testing of metals – ductility testing – compression test for porous and cellular metals. 2011.
  • Soni B, Biswas S. Evaluation of mechanical properties under quasi-static compression of open cell foams of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method. Mater Charact. 2017;130:198–203. doi: 10.1016/j.matchar.2017.06.008.
  • Jing L, Su X, Yang F, et al. Compressive strain rate dependence and constitutive modeling of closed-cell aluminum foams with various relative densities. J Mater Sci. 2018;53(20):14739–14757. doi: 10.1007/s10853-018-2663-z.
  • Zhao Y, Ma C, Xin D, et al. Dynamic mechanical properties of closed-cell aluminum foams with uniform and graded densities. J Mater Res. 2020;35(19):2575–2586. doi: 10.1557/jmr.2020.157.
  • Li QM, Magkiriadis I, Harrigan JJ. Compressive strain at the onset of densification of cellular solids. J Cell Plast. 2006;42(5):371–392. doi: 10.1177/0021955X06063519.
  • Li L, Xue P, Chen Y, et al. Insight into cell size effects on quasi-static and dynamic compressive properties of 3D foams. Mater Sci Eng A. 2015;636:60–69. doi: 10.1016/j.msea.2015.03.052.
  • Habib FN, Iovenitti P, Masood SH, et al. Fabrication of polymeric lattice structures for optimum energy absorption using multi jet fusion technology. Mater Des. 2018;155:86–98. doi: 10.1016/j.matdes.2018.05.059.
  • Duan Y, Du B, Shi X, Hou B, Li Y. Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with kelvin cells. Int J Impact Eng. 2019;132:103303. doi: 10.1016/j.ijimpeng.2019.05.017.
  • Wang N, Maire E, Chen X, Adrien J, Li Y, Amani Y, Hu L, Cheng Y. Compressive performance and deformation mechanism of the dynamic gas injection aluminum foams. Mater Char. 2019;147:11–20. doi: 10.1016/j.matchar.2018.10.013.
  • Lu Z, Huang J, Yuan Z. Effects of microstructure on uniaxial strength asymmetry of open-cell foams. Appl Math Mech-Engl Ed. 2015;36(1):37–46. doi: 10.1007/s10483-015-1893-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.