167
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Research on the cushioning and energy absorption characteristics of gradient sinusoidal negative Poisson’s ratio honeycomb structures

, , &
Pages 726-738 | Received 27 Jan 2023, Accepted 23 Jun 2023, Published online: 29 Oct 2023

References

  • Bonfanti A, Bhaskar A. Elastoplastic response and recoil of honeycomb lattices. Eur J Mech A Solids. 2018;71:77–88. doi: 10.1016/j.euromechsol.2017.12.003.
  • Lim TC. Auxetic materials and structures. Singapore: Springer; 2015.Database]
  • Lee WE. Cellular solids, structure and properties. Mater Sci Technol. 2000;16:233.
  • Galehdari SA, Kadkhodayan M, Hadidi-Moud S. Low velocity impact and quasi-static in-plane loading on a graded honeycomb structure; experimental, analytical and numerical study. Aerosp Sci Technol. 2015;47:425–433. doi: 10.1016/j.ast.2015.10.010.
  • Saxena KK, Das R, Calius EP. Three decades of auxetics research − materials with negative poisson’s ratio: a review. Adv Eng Mater. 2016;18(11):1847–1870. doi: 10.1002/adem.201600053.
  • Zhang J, Dong B, Zhang W. Dynamic crushing of gradient auxetic honeycombs. J Vib Eng Technol. 2021;9(3):421–431. doi: 10.1007/s42417-020-00236-z.
  • Shao Y, Meng J, Ma G, et al. Insight into the negative poisson’s ratio effect of the gradient auxetic reentrant honeycombs. Compos Struct. 2021;274:114366. doi: 10.1016/j.compstruct.2021.114366.
  • Hou W, Yang X, Zhang W, et al. Design of energy-dissipating structure with functionally graded auxetic cellular material. Int J Crashworthiness. 2018;23(4):366–376. doi: 10.1080/13588265.2017.1328764.
  • Yin G, Yao Z. Analysis of impact kinetic properties of gradient negative poisson ratio to honeycomb materials. J Dynam Control. 2017;15:52–58.
  • Ajdari A, Canavan P, Nayeb-Hashemi H, et al. Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation. Mater Sci Eng. 2009;499(1-2):434–439. doi: 10.1016/j.msea.2008.08.040.
  • Mukhopadhyay T, Adhikari S. Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity. Mech Mater. 2016;95:204–222. doi: 10.1016/j.mechmat.2016.01.009.
  • Dolla WJS, Fricke BA, Becker BR. Structural and drug diffusion models of conventional and auxetic drug-eluting stents. J Med Devic. 2007;1(1):47–55. doi: 10.1115/1.2355691.
  • Zhang Z, Lei H, Xu M, et al. Out-of-plane compressive performance and energy absorption of multi-layer graded sinusoidal corrugated sandwich panels. Mater Design. 2019;178:107858. doi: 10.1016/j.matdes.2019.107858.
  • Shariyat M, Hosseini SH. Novel rule-based global-local theory and energy model for sandwich plates with compliant cores and unevenly-distributed anisotropic SMA wires under impulsive/impact loads. Compos Struct. 2019;209:727–738. doi: 10.1016/j.compstruct.2018.11.003.
  • Deng X, Liu W. In-plane impact dynamics analysis of a negative poisson ratio sine curve honeycomb structure. Vibrat Impact. 2017;36:8.
  • Xu F, Yu K, Hua L. In-plane dynamic response and multi-objective optimization of negative poisson’s ratio (NPR) honeycomb structures with sinusoidal curve. Compos Struct. 2021;269:114018. doi: 10.1016/j.compstruct.2021.114018.
  • Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs - a finite element study. Int J Impact Eng. 2003;28(2):161–182. doi: 10.1016/S0734-743X(02)00056-8.
  • Fan T, Zou G. Influences of defects on dynamic crushing properties of functionally graded honeycomb structures. J Sandw Struct Mater. 2015;17(3):295–307. doi: 10.1177/1099636214565763.
  • Gu Y, Xu X. Novel gradient design and simulation of voronoi structures. Int J Appl Mech. 2018;10(07):1850079. doi: 10.1142/S1758825118500795.
  • Bitzer TN. Honeycomb technology: materials, design, manufacturing, applications and testing. Springer Science & Business Media; 1997.
  • Zhang X, An L, Ding H. Dynamic crushing behavior and energy absorption of honeycombs with density gradient. J Sandw Struct Mater. 2014;16(2):125–147. doi: 10.1177/1099636213509099.
  • Zou Z, Reid SR, Tan PJ, et al. Dynamic crushing of honeycombs and features of shock fronts. Int J Impact Eng. 2009;36(1):165–176. doi: 10.1016/j.ijimpeng.2007.11.008.
  • Kooistra GW, Deshpande VS, Wadley HNG. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Mater. 2004;52(14):4229–4237. doi: 10.1016/j.actamat.2004.05.039.
  • Zhou G, Ma ZD, Li G, et al. Design optimization of a novel NPR crash box based on multi-objective genetic algorithm. Struct Multidisc Optim. 2016;54(3):673–684. doi: 10.1007/s00158-016-1452-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.