604
Views
2
CrossRef citations to date
0
Altmetric
Cognition and cognitive reserve

Cognitive training modified age-related brain changes in older adults with subjective memory decline

, , , &
Pages 1997-2005 | Received 04 Feb 2021, Accepted 17 Aug 2021, Published online: 09 Sep 2021

References

  • Amariglio, R. E., Becker, J. A., Carmasin, J., Wadsworth, L. P., Lorius, N., Sullivan, C., Maye, J. E., Gidicsin, C., Pepin, L. C., Sperling, R. A., Johnson, K. A., & Rentz, D. M. (2012). Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia, 50(12), 2880–2886. https://doi.org/10.1016/j.neuropsychologia.2012.08.011
  • Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., Kong, E., Larraburo, Y., Rolle, C., Johnston, E., & Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97–101. https://doi.org/10.1038/nature12486
  • Ashraf, A., Fan, Z., Brooks, D. J., & Edison, P. (2015). Cortical hypermetabolism in MCI subjects: A compensatory mechanism?European Journal of Nuclear Medicine and Molecular Imaging, 42(3), 447–458. https://doi.org/10.1007/s00259-014-2919-z
  • Belleville, S., Clément, F., Mellah, S., Gilbert, B., Fontaine, F., & Gauthier, S. (2011). Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain, 134(Pt 6), 1623–1634. https://doi.org/10.1093/brain/awr037
  • Bokde, A. L., Lopez-Bayo, P., Born, C., Ewers, M., Meindl, T., Teipel, S. J., Faltraco, F., Reiser, M. F., Möller, H. J., & Hampel, H. (2010). Alzheimer disease: Functional abnormalities in the dorsal visual pathway. Radiology, 254(1), 219–226. https://doi.org/10.1148/radiol.2541090558
  • Buckley, R. F., Hanseeuw, B., Schultz, A. P., Vannini, P., Aghjayan, S. L., Properzi, M. J., Jackson, J. D., Mormino, E. C., Rentz, D. M., Sperling, R. A., Johnson, K. A., & Amariglio, R. E. (2017). Region-specific association of subjective cognitive decline with tauopathy independent of global β-amyloid burden. JAMA Neurology, 74(12), 1455–1463. https://doi.org/10.1001/jamaneurol.2017.2216
  • Canevelli, M., Adali, N., Tainturier, C., Bruno, G., Cesari, M., & Vellas, B. (2013). Cognitive interventions targeting subjective cognitive complaints. American Journal of Alzheimer’s Disease and Other Dementias, 28(6), 560–567. https://doi.org/10.1177/1533317513494441
  • Corriveau-Lecavalier, N., Mellah, S., Clément, F., & Belleville, S. (2019). Evidence of parietal hyperactivation in individuals with mild cognitive impairment who progressed to dementia: A longitudinal fMRI study. NeuroImage. Clinical, 24, 101958. https://doi.org/10.1016/j.nicl.2019.101958
  • da Silva, H. S., & Yassuda, M. S. (2009). Memory training for older adults with low education: Mental images versus categorization. Educational Gerontology, 35(10), 890–905. https://doi.org/10.1080/03601270902782487
  • Das, N., Ren, J., Spence, J. S., Rackley, A., & Chapman, S. B. (2020). Relationship of parieto-occipital brain energy phosphate metabolism and cognition using (31)P MRS at 7-tesla in amnestic mild cognitive impairment. Frontiers in Aging Neuroscience, 12, 222. https://doi.org/10.3389/fnagi.2020.00222
  • Elman, J. A., Oh, H., Madison, C. M., Baker, S. L., Vogel, J. W., Marks, S. M., Crowley, S., O’Neil, J. P., & Jagust, W. J. (2014). Neural compensation in older people with brain amyloid-β deposition. Nature Neuroscience, 17(10), 1316–1318. https://doi.org/10.1038/nn.3806
  • Engvig, A., Fjell, A. M., Westlye, L. T., Skaane, N. V., Dale, A. M., Holland, D., Due-Tønnessen, P., Sundseth, O., & Walhovd, K. B. (2014). Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. Journal of Alzheimer’s Disease, 41(3), 779–791. https://doi.org/10.3233/JAD-131889
  • Engvig, A., Fjell, A. M., Westlye, L. T., Skaane, N. V., Sundseth, Ø., & Walhovd, K. B. (2012). Hippocampal subfield volumes correlate with memory training benefit in subjective memory impairment. NeuroImage, 61(1), 188–194. https://doi.org/10.1016/j.neuroimage.2012.02.072
  • Gong, Y. (1992). Manual of Wechsler Adult Intelligence Scale–Chinese version. Chinese Map Press.
  • Hafkemeijer, A., Altmann-Schneider, I., Oleksik, A. M., van de Wiel, L., Middelkoop, H. A., van Buchem, M. A., van der Grond, J., & Rombouts, S. A. (2013). Increased functional connectivity and brain atrophy in elderly with subjective memory complaints. Brain Connectivity, 3(4), 353–362. https://doi.org/10.1089/brain.2013.0144
  • Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., He, Y., & Jia, J. (2011). Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: A resting-state fMRI study. NeuroImage, 55(1), 287–295. https://doi.org/10.1016/j.neuroimage.2010.11.059
  • Hasson, U., Nusbaum, H. C., & Small, S. L. (2009). Task-dependent organization of brain regions active during rest. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10841–10846. https://doi.org/10.1073/pnas.0903253106
  • Horn, M. M., Kennedy, K. M., & Rodrigue, K. M. (2018). Association between subjective memory assessment and associative memory performance: Role of ad risk factors. Psychology and Aging, 33(1), 109–118. https://doi.org/10.1037/pag0000217
  • Jessen, F., Wolfsgruber, S., Wiese, B., Bickel, H., Mösch, E., Kaduszkiewicz, H., Pentzek, M., Riedel-Heller, S. G., Luck, T., Fuchs, A., Weyerer, S., Werle, J., van den Bussche, H., Scherer, M., Maier, W., & Wagner, M. (2014). AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimer’s & Dementia, 10(1), 76–83. https://doi.org/10.1016/j.jalz.2012.09.017
  • Kawagoe, T., Onoda, K., & Yamaguchi, S. (2019). Subjective memory complaints are associated with altered resting-state functional connectivity but not structural atrophy. NeuroImage. Clinical, 21, 101675. https://doi.org/10.1016/j.nicl.2019.101675
  • Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A., & Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418–419. https://doi.org/10.1038/22682
  • Kwok, T. C., Bai, X., Li, J. C., Ho, F. K., & Lee, T. M. (2013). Effectiveness of cognitive training in Chinese older people with subjective cognitive complaints: A randomized placebo-controlled trial. International Journal of Geriatric Psychiatry, 28(2), 208–215. https://doi.org/10.1002/gps.3812
  • Lawton, M. P., & Brody, E. M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. The Gerontologist, 9(3), 179–186. https://doi.org/10.1093/geront/9.3_Part_1.179
  • Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17558–17563. https://doi.org/10.1073/pnas.0902455106
  • Mennes, M., Zuo, X. N., Kelly, C., Di Martino, A., Zang, Y. F., Biswal, B., Castellanos, F. X., & Milham, M. P. (2011). Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics. NeuroImage, 54(4), 2950–2959. https://doi.org/10.1016/j.neuroimage.2010.10.046
  • Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective & Behavioral Neuroscience, 12(2), 241–268. https://doi.org/10.3758/s13415-011-0083-5
  • Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292–305. https://doi.org/10.1016/j.tics.2012.04.005
  • Nyberg, L., Sandblom, J., Jones, S., Neely, A. S., Petersson, K. M., Ingvar, M., & Bäckman, L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13728–13733. https://doi.org/10.1073/pnas.1735487100
  • Pan, P., Zhu, L., Yu, T., Shi, H., Zhang, B., Qin, R., Zhu, X., Qian, L., Zhao, H., Zhou, H., & Xu, Y. (2017). Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: A meta-analysis of resting-state fMRI studies. Ageing Research Reviews, 35, 12–21. https://doi.org/10.1016/j.arr.2016.12.001
  • Pearson, J. (2019). The human imagination: The cognitive neuroscience of visual mental imagery. Nature Reviews. Neuroscience, 20(10), 624–634. https://doi.org/10.1038/s41583-019-0202-9
  • Peter, J., Scheef, L., Abdulkadir, A., Boecker, H., Heneka, M., Wagner, M., Koppara, A., Klöppel, S., & Jessen, F. (2014). Gray matter atrophy pattern in elderly with subjective memory impairment. Alzheimer’s & Dementia, 10(1), 99–108. https://doi.org/10.1016/j.jalz.2013.05.1764
  • Pieramico, V., Esposito, R., Sensi, F., Cilli, F., Mantini, D., Mattei, P. A., Frazzini, V., Ciavardelli, D., Gatta, V., Ferretti, A., Romani, G. L., & Sensi, S. L. (2012). Combination training in aging individuals modifies functional connectivity and cognition, and is potentially affected by dopamine-related genes. PLoS One, 7(8), e43901. https://doi.org/10.1371/journal.pone.0043901
  • Pievani, M., de Haan, W., Wu, T., Seeley, W. W., & Frisoni, G. B. (2011). Functional network disruption in the degenerative dementias. The Lancet. Neurology, 10(9), 829–843. https://doi.org/10.1016/S1474-4422(11)70158-2
  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018
  • Rebok, G. W., Carlson, M. C., & Langbaum, J. B. (2007). Training and maintaining memory abilities in healthy older adults: Traditional and novel approaches. The Journals of Gerontology: Series B, 62(Special_Issue_1), 53–61. https://doi.org/10.1093/geronb/62.special_issue_1.53
  • Risacher, S. L., Saykin, A. J., West, J. D., Shen, L., Firpi, H. A., & McDonald, B. C. (2009). Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Current Alzheimer Research, 6(4), 347–361. https://doi.org/10.2174/156720509788929273
  • Rodda, J. E., Dannhauser, T. M., Cutinha, D. J., Shergill, S. S., & Walker, Z. (2009). Subjective cognitive impairment: Increased prefrontal cortex activation compared to controls during an encoding task. International Journal of Geriatric Psychiatry, 24(8), 865–874. https://doi.org/10.1002/gps.2207
  • Salimi, S., Irish, M., Foxe, D., Hodges, J. R., Piguet, O., & Burrell, J. R. (2018). Can visuospatial measures improve the diagnosis of Alzheimer’s disease?Alzheimer’s & Dementia, 10, 66–74. https://doi.org/10.1016/j.dadm.2017.10.004
  • Scheef, L., Spottke, A., Daerr, M., Joe, A., Striepens, N., Kölsch, H., Popp, J., Daamen, M., Gorris, D., Heneka, M. T., Boecker, H., Biersack, H. J., Maier, W., Schild, H. H., Wagner, M., & Jessen, F. (2012). Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology, 79(13), 1332–1339. https://doi.org/10.1212/WNL.0b013e31826c1a8d
  • Schultz, S. A., Oh, J. M., Koscik, R. L., Dowling, N. M., Gallagher, C. L., Carlsson, C. M., Bendlin, B. B., LaRue, A., Hermann, B. P., Rowley, H. A., Asthana, S., Sager, M. A., Johnson, S. C., & Okonkwo, O. C. (2015). Subjective memory complaints, cortical thinning, and cognitive dysfunction in middle-aged adults at risk for AD. Alzheimer’s & Dementia, 1(1), 33–40. https://doi.org/10.1016/j.dadm.2014.11.010
  • Smith, G. E., Housen, P., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., & Zelinski, E. M. (2009). A cognitive training program based on principles of brain plasticity: Results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594–603. https://doi.org/10.1111/j.1532-5415.2008.02167.x
  • Stewart, R. (2012). Subjective cognitive impairment. Current Opinion in Psychiatry, 25(6), 445–450. https://doi.org/10.1097/YCO.0b013e3283586fd8
  • Talati, A., & Hirsch, J. (2005). Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on "what," "when," and "where" related information: An fMRI study. Journal of Cognitive Neuroscience, 17(7), 981–993. https://doi.org/10.1162/0898929054475226
  • Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044
  • Vranic, A., Martincevic, M., & Borella, E. (2021). Mental imagery training in older adults: Which are benefits and individual predictors?International Journal of Geriatric Psychiatry, 36(2), 334–341. https://doi.org/10.1002/gps.5428
  • Xu, S., & Wu, Z. (1986). The construction of" The Clinical Memory Test”. Acta Psychologica Sinica , 18(01), 100–108.
  • Yi, H. G., Leonard, M. K., & Chang, E. F. (2019). The encoding of speech sounds in the superior temporal gyrus. Neuron, 102(6), 1096–1110. https://doi.org/10.1016/j.neuron.2019.04.023
  • Yin, S., Zhu, X., Li, R., Niu, Y., Wang, B., Zheng, Z., Huang, X., Huo, L., & Li, J. (2014). Intervention-induced enhancement in intrinsic brain activity in healthy older adults. Scientific Reports, 4, 7309. https://doi.org/10.1038/srep07309
  • Yu, J., Li, J., & Huang, X. (2012). The Beijing version of the Montreal Cognitive Assessment as a brief screening tool for mild cognitive impairment: A community-based study. BMC Psychiatry, 12(1), 156. https://doi.org/10.1186/1471-244X-12-156
  • Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., Tian, L. X., Jiang, T. Z., & Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 83–91. https://doi.org/10.1016/j.braindev.2006.07.002
  • Zou, Q., Ross, T. J., Gu, H., Geng, X., Zuo, X. N., Hong, L. E., Gao, J. H., Stein, E. A., Zang, Y. F., & Yang, Y. (2013). Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Human Brain Mapping, 34(12), 3204–3215. https://doi.org/10.1002/hbm.22136

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.