423
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of two types of low-transformation-temperature weld metals based on solidification mode

, , , , &
Pages 241-248 | Received 28 May 2017, Accepted 13 Aug 2017, Published online: 19 Sep 2017

References

  • Alghamdi T, Liu S. Low-transformation-temperature (LTT) welding consumables for residual stress management: consumables development and testing qualification. Weld J. 2014;93:243–252.
  • Okano S, Mochizuki M. A methodology of appropriate weld procedures for axial compressive residual stress on inner surface in multi-pass girth welded pipe joint. J High Press Inst Jpn. 2010;48:86–96.
  • Tai M, Miki C. Fatigue performance under variable amplitude loading of welded joints by introducing compressive residual stress. J Jpn Soc Civ Eng Ser A1. 2015;71:139–151.
  • Ilman MN, Kusmono, Muslih MR, et al. Mitigating distortion and residual stress by static thermal tensioning to improve fatigue crack growth performance of MIG AA5083 welds. Mater Des. 2016;99:273–283. doi: 10.1016/j.matdes.2016.03.049
  • Zhao MS, Chiew SP, Lee CK. Post weld heat treatment for high strength steel welded connections. J Construct Steel Res. 2016;122:167–177. doi: 10.1016/j.jcsr.2016.03.015
  • Gan J, Sun D, Wang Z, et al. The effect of shot peening on fatigue life of Q345D T-welded joint. J Construct Steel Res. 2016;126:74–82. doi: 10.1016/j.jcsr.2016.07.010
  • Kudryavtsev Y, Kleiman J. Residual stress management in welding: measurement, fatigue analysis and improvement treatments. Paton Weld J. 2013;10:135–141.
  • Jones W, Alberry P. A model for stress accumulation in steels during welding. Met Technol. 1977;11:557–566.
  • Satoh K, Matsui S, Machida T. Thermal stresses developed in high-strength steels subjected to thermal cycles simulating weld heat-affected zone. Trans Jpn Weld Soc. 1972;3:135–142.
  • Nitschkepagel T, Wohlfahrt H. Residual stress distributions after welding as a consequence of the combined effect of physical, metallurgical and mechanical sources. In: Karlsson L, Lindgren LE, Jonsson M, editors. Mechanical effects of welding: IUTAM symposium Lulea/Sweden 1991. Berlin: Springer Verl; 1992. p. 123–134.
  • Ohta A. Fatigue strength improvement by using newly developed low transformation temperature welding material. Weld World. 1999;43:38–42.
  • Lixing H, Dongpo W, Wenxian W, et al. Ultrasonic peening and low transformation temperature electrodes used for improving the fatigue strength of welded joints. Weld World. 2004;48:34–39. doi: 10.1007/BF03266425
  • Thibault D, Bocher P, Thomas M, et al. Residual stress characterization in low transformation temperature 13%Cr–4%Ni stainless steel weld by neutron diffraction and the contour method. Mater Sci Eng A. 2010;527:6205–6210. doi: 10.1016/j.msea.2010.06.035
  • Zenitani S, Hayakawa N, Yamamoto J, et al. Development of new low transformation temperature welding consumable to prevent cold cracking in high strength steel welds. Sci Technol Weld Join. 2007;12:516–522. doi: 10.1179/174329307X213675
  • Ramjaun T, Stone HJ, Karlsson L, et al. Effect of interpass temperature on residual stresses in multipass welds produced using low transformation temperature filler alloy. Sci Technol Weld Join. 2014;19:44–51. doi: 10.1179/1362171813Y.0000000162
  • Novotný L, de Abreu HFG, de Miranda HC, et al. Simulations in multipass welds using low transformation temperature filler material. Sci Technol Weld Join. 2016;21:680–687. doi: 10.1080/13621718.2016.1177989
  • Kromm A, Dixneit J, Kannengiesser T. Residual stress engineering by low transformation temperature alloys—state of the art and recent developments. Weld World. 2014;58:729–741. doi: 10.1007/s40194-014-0155-6
  • Shankar V, Gill TPS, Mannan SL, et al. Solidification cracking in austenitic stainless steel welds. Sādhanā. 2003;28:359–382. doi: 10.1007/BF02706438
  • Bish DL, Howard SA. Quantitative phase analysis using the Rietveld method. J Appl Crystallogr. 1988;21:86–91. doi: 10.1107/S0021889887009415
  • Kim YH, Kim DG, Sung JH, et al. Influences of Cr/Ni equivalent ratios of filler wires on pitting corrosion and ductility-dip cracking of AISI 316L weld metals. Met Mater Int. 2011;17:151–155. doi: 10.1007/s12540-011-0221-1
  • Schaeffler AL. Constitution diagram for stainless-steel weld metal. 2. Schaeffler diagram. Met Prog. 1974;106:227–227.
  • Behjati P, Najafizadeh A. Role of chemical driving force in martensitic transformations of high-purity Fe-Cr-Ni alloys. Metall Mater Trans A. 2011;42:3752–3760. doi: 10.1007/s11661-011-0769-x
  • Nitschke-Pagel T, Wohlfahrt H. Residual stresses in welded joints – sources and consequences. Mater Sci Forum. 2002;404–407:215–226. doi: 10.4028/www.scientific.net/MSF.404-407.215
  • Elmer J, Olson D, Matlock D. Thermal expansion characteristics of stainless steel weld metal. Weld J. 1982;61:293–301.
  • Mochizuki M, Matsushima S, Toyoda M, et al. Fundamental study of thermal stress generation during welding heat cycles. Studies on numerical simulation of temperature, microstructure and thermal stress histories during welding, and their application to welded structures. Weld Int. 2005;19:702–710. doi: 10.1533/wint.2005.3490
  • Rajasekhar K, Harendranath CS, Raman R, et al. Microstructural evolution during solidification of austenitic stainless steel weld metals: a color metallographic and electron microprobe analysis study. Mater Charact. 1997;38:53–65. doi: 10.1016/S1044-5803(97)80024-1
  • Lin YC, Chen PY. Effect of nitrogen content and retained ferrite on the residual stress in austenitic stainless steel weldments. Mater Sci Eng A. 2001;307:165–171. doi: 10.1016/S0921-5093(00)01821-9
  • Alghamdi T, Liu S. Low transformation temperature welding consumables for residual stress management: a numerical model for the prediction of phase transformation-induced compressive residual stresses. Weld J. 2014;93:458–471.
  • Qiu H, Wang L, Zuo H, et al. Enhanced low-temperature tensile properties of Fe–14Cr–(4∼9)Ni weld metal by retained austenite. Q J Jpn Weld Soc. 2012;30:171–179. doi: 10.2207/qjjws.30.171
  • Zhang Z, Farrar RA. Columnar grain development in C–Mn–Ni low-alloy weld metals and the influence of nickel. J Mater Sci. 1995;30:5581–5588. doi: 10.1007/BF00356690
  • Wang P, Lu SP, Xiao NM, et al. Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater Sci Eng A. 2010;527:3210–3216. doi: 10.1016/j.msea.2010.01.085
  • Bashu SA, Singh K, Rawat MS. Effect of heat treatment on mechanical properties and fracture behaviour of a 12CrMoV steel. Mater Sci Eng A. 1990;127:7–15. doi: 10.1016/0921-5093(90)90184-5
  • Feng ZL, Huo LX, Wang WX, et al. Experiment on dressing for improving fatigue strengths of welded joints with low transformation temperature electrode. Trans China Weld Inst. 2006;27:11–14.
  • Xu LY, Wang YF, Jing HY, et al. Fatigue strength improvement of stainless steel using weld toes dressing with low transformation temperature welding wire. Sci Technol Weld Join. 2014;19:664–672. doi: 10.1179/1362171814Y.0000000240
  • Hsieh CC, Lin DY, Chen MC, et al. Precipitation and strengthening behavior of massive δ-ferrite in dissimilar stainless steels during massive phase transformation. Mater Sci Eng A. 2008;477:328–333. doi: 10.1016/j.msea.2007.05.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.