540
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure evolution and fracture behaviour of friction stir welded 6061-T6 thin plate joints under high rotational speed

, &
Pages 333-343 | Received 16 Jun 2017, Accepted 03 Oct 2017, Published online: 20 Oct 2017

References

  • Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56:862–871. doi: 10.1016/j.matdes.2013.12.002
  • Nakai M, Eto T. New aspect of development of high strength aluminum alloys for aerospace applications. Mater Sci Eng A. 2000;285:62–68. doi: 10.1016/S0921-5093(00)00667-5
  • Miller WS, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A. 2000;280:37–49. doi: 10.1016/S0921-5093(99)00653-X
  • Aydin H, Bayram A, Uğuz A, et al. Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state. Mater Des. 2009;30:2211–2221. doi: 10.1016/j.matdes.2008.08.034
  • Gibson BT, Lammlein DH, Praterc TJ, et al. Friction stir welding: process, automation, and control. J Manuf Process. 2014;16:56–73. doi: 10.1016/j.jmapro.2013.04.002
  • Sato YS, Kokawa H, Enomoto M, et al. Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mater Trans A. 1999;30:2429–2437. doi: 10.1007/s11661-999-0251-1
  • Elangovan K, Balasubramanian V, Valliappan M. Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol. 2008;38:285–295. doi: 10.1007/s00170-007-1100-2
  • Sato YS, Urata M, Kokawa H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall Mater Trans A. 2002;33:625–635. doi: 10.1007/s11661-002-0124-3
  • Kumbhar NT, Bhanumurthy K. Friction stir welding of Al 6061 alloy. Asian J Exp Sci. 2008;22:63–74.
  • Liu HJ, Hou JC, Guo H. Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy. Mater Des. 2013;50:872–878. doi: 10.1016/j.matdes.2013.03.105
  • Rodrigues DM, Loureiro A, Leitao C, et al. Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Mater Des. 2009;30:1913–1921. doi: 10.1016/j.matdes.2008.09.016
  • Woo W, Feng Z, Wang XL, et al. In situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminium alloy. Sci Technol Welding Joining. 2007;12:298–303. doi: 10.1179/174329307X197548
  • Cavaliere P, Campanile G, Panella F, et al. Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by friction stir welding. J Mater Process Technol. 2006;180:263–270. doi: 10.1016/j.jmatprotec.2006.06.015
  • Liu FC, Ma ZY. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy. Metall Mater Trans A. 2008;39:2378–2388. doi: 10.1007/s11661-008-9586-2
  • Upadhyay P, Reynolds A. Effect of backing plate thermal property on friction stir welding of 25-mm-thick AA6061. Metall Mater Trans A. 2014;45:2091–2100. doi: 10.1007/s11661-013-2121-0
  • Krishnan KN. The effect of post weld heat treatment on the properties of 6061 friction stir welded joints. J Mater Sci. 2002;37:473–480. doi: 10.1023/A:1013701104029
  • Elangovan K, Balasubramanian V. Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Mater Charact. 2008;59:1168–1177. doi: 10.1016/j.matchar.2007.09.006
  • Dong P, Sun DQ, Li HM. Natural aging behaviour of friction stir welded 6005A-T6 aluminium alloy. Mater Sci Eng A. 2013;576:29–35. doi: 10.1016/j.msea.2013.03.077
  • Malopheyev S, Vysotskiy I, Kulitskiy V, et al. Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy. Mater Sci Eng A. 2016;662:136–143. doi: 10.1016/j.msea.2016.03.063
  • Arbegast WJ. A flow-partitioned deformation zone model for defect formation during friction stir welding. Scr Mater. 2008;58:372–376. doi: 10.1016/j.scriptamat.2007.10.031
  • Chen ZW, Pasang T, Qi Y. Shear flow and formation of Nugget zone during friction stir welding of aluminium alloy 5083-O. Mater Sci Eng A. 2008;474:312–316. doi: 10.1016/j.msea.2007.05.074
  • Zhang Z, Xiao BL, Wang D, et al. Effect of alclad layer on material flow and defect formation in friction-stir-welded 2024 aluminum alloy. Metall Mater Trans A. 2011;42:1717–1726. doi: 10.1007/s11661-010-0545-3
  • Chen HY, Fu L, Liang P. Microstructure, texture and mechanical properties of friction stir welded butt joints of 2A97 Al-Li alloy ultra-thin sheets. J Alloy Comp. 2017;692:155–169. doi: 10.1016/j.jallcom.2016.08.330
  • Jazaeri H, Humphreys FJ. The transition from discontinuous to continuous recrystallization in some aluminum alloy II- annealing behaviour. Acta Mater. 2004;52:3239–3250. doi: 10.1016/j.actamat.2004.03.030
  • Chang CI, Lee CJ, Huang JC. Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scr Mater. 2004;51:509–514. doi: 10.1016/j.scriptamat.2004.05.043
  • Chang CI, Du XH, Huang JC. Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing. Scr Mater. 2007;57:209–212. doi: 10.1016/j.scriptamat.2007.04.007
  • Esmaeili S, Wang X, Lloyd DJ, et al. On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111. Mater Trans A. 2003;34:751–763.
  • Wang X, Esmaeili S, Lloyd DJ. The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111. Metall Mater Trans A. 2006;37:2691–2699. doi: 10.1007/BF02586103
  • Murr LE, Liu G, Mcclure JC. A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium. J Mater Sci. 1998;33:1243–1251. doi: 10.1023/A:1004385928163
  • Cui L, Yang XQ, Zhou G, et al. Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints. Mater Sci Eng A. 2012;543:58–68. doi: 10.1016/j.msea.2012.02.045
  • Liu HJ, Chen YC, Feng JC. Effect of zigzag line on the mechanical properties of friction stir welded joints of an Al-Cu alloy. Scr Mater. 2006;55:231–234. doi: 10.1016/j.scriptamat.2006.04.013
  • Chen HB, Wang JF, Zhen GD, et al. Effects of initial oxide on microstructural and mechanical properties of friction stir welded AA2219 alloy. Mater Des. 2015;86:49–54. doi: 10.1016/j.matdes.2015.06.179
  • Liu HJ, Fujii H, Maeda M, et al. Tensile properties and fracture locations of friction-stir welded joints of 2017-T351 aluminum alloy. J Mater Process Technol. 2003;142:692–696. doi: 10.1016/S0924-0136(03)00806-9
  • Sato YS, Kokawa H. Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum. Metall Mater Trans A. 2001;32:3023–3031. doi: 10.1007/s11661-001-0177-8
  • Liu HJ, Fujii H, Maeda M, et al. Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy. J Mater Sci Lett. 2003;22:1061–1063. doi: 10.1023/A:1024970421082

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.