1,025
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Acicular ferrite and bainite in C–Mn and low-alloy steel arc weld metals

Pages 635-648 | Received 27 Oct 2017, Accepted 03 Apr 2018, Published online: 19 Apr 2018

References

  • Abson DJ, Pargeter RJ. Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C-Mn steel fabrications. Int Met Rev. 1986;31(1):141–196. doi: 10.1179/imr.1986.31.1.141
  • Yamada T, Terasaki H, Komizo Y. Microscopic observation of inclusions contributing to formation of acicular ferrite in steel weld metal. Sci Technol Weld Joining. 2008;13(2):118–125. doi:doi: 10.1179/174329308X271797
  • Sarma DS, Karasev AV, Jönsson PG. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int. 2009;49(7):1063–1074. doi: 10.2355/isijinternational.49.1063
  • Puab J, Yua SF, Lib YY. Effects of Zr-Ti on the microstructure and properties of flux aided backing submerged arc weld metal. J Alloys Compd. 2017;692:351–358. doi: 10.1016/j.jallcom.2016.09.045
  • Oh Y-J, Lee S-Y, Byun J-S, et al. Non-metallic inclusions and acicular ferrite in low carbon steels. Mater Trans. 2000;41(12):1663–1669. doi: 10.2320/matertrans1989.41.1663
  • Howe JM. Atomic site correspondence and surface relief in the formation of plate-shaped transformation products. Metall Mater Trans. 1994;25A:1917–1931. doi: 10.1007/BF02649039
  • Townsend RD, Kirkaldy JS. Widmanstätten ferrite formation in Fe-C alloys. Trans ASM. 1968;61:605–619.
  • Enomoto M. Thermodynamics and kinetics of the formation of Widmanstätten ferrite plates in ferrous alloys. Metall Mater Trans. 1994;25A(9):1947–1955. doi: 10.1007/BF02649043
  • Steven W, Haynes AG. The temperature of formation of martensite and bainite in low-alloy steels – Some effects of chemical composition. J Iron Steel Inst. 1956;183:349–359.
  • Esmailian M. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steel. Iran J Mater Sci Eng. 2010;7(1):7–14.
  • Krahe PR, Kinsman KR, Aaronson HI. Influence of austenite grain size upon the Widmanstätten-start (Is) temperature for the proeutectoid ferrite reaction. Acta Met. 1972;20(9):1109–1121. doi: 10.1016/0001-6160(72)90175-7
  • Aaronson HI. The proeutectoid ferrite and the proeutectoid cementite reactions. In: Zackay VF and Aaronson HI, editors. Decomposition of austenite by diffusional processes, proceedings of a symposium held in Philadelphia, USA; 1960 Oct 19; New York: The Metallurgical Society of AIME, Interscience; 1962. p. 388–548.
  • Thelning K-E. Steel and its heat treatment. 2nd ed. London: Butterworths; 1984; ISBN: 978-0-408-01424-3.
  • Ohmori Y, Ohtsubo H, Jung Y-C, et al. Morphology of bainite and widmanstätten ferrite. Metall Mater Trans. 1994;25A(9):1981–1989. doi: 10.1007/BF02649046
  • Christian JW, Edmonds DV. The bainite transformation. In: Marder AR, Goldstein JI, editors. Phase transformations in ferrous alloys. Warrendale (PA): The Metallurgical Society of AIME; 1984. p. 293–325.
  • Tsuzaki K, Kodai A, Maki T. Formation mechanism of bainitic ferrite in an Fe-2 Pct Si-0.6 Pct alloy. Metall Mater Trans. 1994;25A:2009–2016. doi: 10.1007/BF02649049
  • Bhadeshia HKDH. Bainite in steels: transformations, microstructure and properties. 2nd ed. London: The Institute of Materials. 2001. ISBN 1 86125 112 2 (H).
  • Fielding LCD. The Bainite controversy. Mater Sci Technol. 2013;29(4):383–399. doi: 10.1179/1743284712Y.0000000157
  • Kluken AO, Grong Ø, Rørvik G. Solidification microstructures and phase transformations in Al-Ti-Si-Mn deoxidized steel weld metals. Metall Trans. 1990;21A(7):2047–2058. doi: 10.1007/BF02647252
  • Choi CL, Hill DC. A study of microstructural progression in as-deposited weld metal. Welding J. 1978;57(8):232s–236s.
  • Cochrane RC, Kirkwood PR. The effect of oxygen on (submerged arc) weld metal microstructure. Proc. Int. Conf. On Trends in Steels and Consumables for Welding; 1978 Nov 13–16; London. Abington: The Welding Institute; 1979. ISBN 0-85300128-6, Paper 35:103–121; Session discussion; p. 609–617.
  • Ito Y, Nakanishi M. Study of the properties of weld metal with submerged arc welding. The Sumitomo Search. 1976;15:42–62.
  • IIW Doc. No.IX-1533-88/IXJ-123-87 Revision 2/June 1988 Guide to the light microscope examination of ferritic steel weld metals. International Institute of Welding, Lastijdschrift/Revue de la Soudure. 1990;46(4):29–41.
  • Ichikawa K, Bhadeshia HKDH. Simultaneous transformation to allotriomorphic and Widmanstätten ferrite in steel welds. Proc. Fourth international seminar on Numerical analysis of weldability, Graz-Seggu, Austria, 1997 Sept 29 to Oct 1.p. 302–320.
  • Liu S, Olson DL. The role of inclusions in controlling HSLA steel weld metal microstructure. Weld J. 1986;5(6):139s–149s.
  • Zhang Z, Farrar RA. An atlas of continuous cooling transformation (CCT) diagrams applicable to low carbon low alloy weld metals. London; Institute of Materials, Minerals and Mining; 1995, ISBN 0901716944.
  • Harrison PL. Continuous cooling transformation kinetics and microstructure of mild and low-alloy steel weld metal [PhD thesis]. Southampton: University of Southampton; 1983.
  • Harrison PL, Farrar RA. Microstructural development and toughness of C-Mn and C-Mn-Ni (steel) weld metals. Part 1: microstructural development. Met Constr. 1987;19(7):392R–399R.
  • Koseki T, Ohkita S, Yurioka N. Thermodynamic study of inclusion formation in low alloy steel weld metals. Sci Technol Weld Joining. 1997;2(2):65–69. doi: 10.1179/stw.1997.2.2.65
  • Hultgren A. Metallographic investigation of butt-welded steel specimens tested in fatigue. Jernkontorets Annalyser. 1968;152(4):170–178.
  • Abson DJ, Dolby RE, Hart PHMH. The role of nonmetallic inclusions in ferrite nucleation in carbon steel weld metals. Trends in Steels and Consumables for Welding. Proceedings, International Conference, London; 1978 Nov 13–16;Abington: The Welding Institute; 1979. Paper 25: 75–101; session discussion: 609–617. ISBN 0-85300128-6 (Papers), 0-85300132-4 (Discussions).
  • Barritte GS. Microstructure of weld metals in low alloy steels [PhD thesis]. Cambridge: University of Cambridge; 1982.
  • Ricks RA, Barritte GS, Howell PR. The influence of second phase particles on diffusional phase transformations in steels. Proc. Intl. Conf. on Solid State Phase Transformations, Pittsburgh, PA, AIME; 1981. p. 463–468.
  • Dowling JM, Corbett JM, Kerr HW. Inclusion phases and the nucleation of acicular ferrite in submerged arc welds in high strength low alloy steels. Metall Trans. 1986;17A:1611–1723. doi: 10.1007/BF02650098
  • Zhang Z, Farrar RA. Role of non-metallic inclusions in formation of acicular ferrite in low-alloy weld metals. Mater Sci Technol. 1996;12(3):237–260. doi: 10.1179/mst.1996.12.3.237
  • St. Laurent S, L’Espérance G. Effects of chemistry, density and size distribution of inclusions on the nucleation of acicula ferrite of C-Mn shielded-metal-arc-welding weldments. Mater Sci Eng A. 1992;149(2):203–216. doi: 10.1016/0921-5093(92)90381-A
  • Lee T-K, Kim HJ, Kang BY, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds. ISIJ Int. 2000;40(12):1260–1268. doi: 10.2355/isijinternational.40.1260
  • Loader D, Michelic SK, Bernhard C. Acicular ferrite formation and its influencing factors – a review. J Mater Sci Res. 2017;6(1):24–43. doi: 10.5539/jmsr.v6n1p24
  • Barritte GS, Ricks RA Howell PR. The effect of inclusions on the structure and properties of HSLA (high strength low alloy) steel weld metals. In: Gifkins RC, editor. Strength of Metals and Alloys. Proc., 6th Int. Conf. (ICSMA6), Melbourne, Australia; 1982 Aug 16–20; Oxford: Pergamon Press; 1983. ISBN 0-08-029325-5. Vol.1:121-126. ISBN: 0-08-029325-5.
  • Abson DJ. Non-metallic inclusions in ferritic steel weld metals – a review. International Institute of Welding, Welding in the World/Soudage dans le Monde. 1989;27(3–4):76–101 (in English, French).
  • Grong Ø, Kluken AO, Nylund HK HK, et al. Catalyst effects in heterogeneous nucleation of acicular ferrite. Metall Mater Trans. 1995;A26(3):525–534. doi: 10.1007/BF02663903
  • Farrar RA, Harrison PL. Acicular ferrite in carbon-manganese weld metals: an overview. J Mater Sci. 1987;22(11):3812–3820. doi: 10.1007/BF01133327
  • Grong Ø, Matlock DK. Microstructural development in mild and low-alloy steel weld metals. Int Met Rev. 1986;31(1):27–48. doi: 10.1179/imr.1986.31.1.27
  • Tuliani SS. Carbonate fluxes of submerged-arc welding of mild steel [PhD thesis]. Southampton: University of Southampton; 1973.
  • Abson DJ Dolby RE. Microstructural transformation in steel weld metals – a reappraisal. Welding Institute Research Bulletin. 1978; 19:202–207.
  • Farrar RA, Zhang Z. Aspect ratios and morphology of acicular ferrite in C-Mn-Ni weld metals. Mater Sci Technol. 1995;11(8):759–764. doi: 10.1179/mst.1995.11.8.759
  • Masumoto I, Suga H. Dislocation structures in various types of ferrites in mild steel weld metals. J Jpn Weld Soc. 1982;51(4):349–353. doi: 10.2207/qjjws1943.51.349
  • Hoekstra S, Munning Schmidt-van der Burg MA, den Ouden G. Microstructure and notch toughness of ferritic weld metal. Met Constr. 1986;18(12):771–775.
  • Ito Y, Nakanishi M, Komizo Y. Effects of oxygen on low carbon steel weld metal. Met Constr. 1982;14(9):472–478.
  • Bailey N. Ferritic steel weld metal microstructures and toughness. Proc. Centenary Conf. on Perspectives in Metallurgical Development; 1984 July 16–18; Sheffield, Book 318. London: Metals Society; 1984. p. 276–281, ISBN: 0-904357-71-6.
  • Horii Y, Ichikawa K, Ohkita S, et al. Chemical composition and crystal structure of oxide inclusions promoting acicular ferrite transformation in low alloy submerged arc weld metal. Q J Jpn Weld Soc. 1995;13(4):500–507. doi: 10.2207/qjjws.13.500
  • Koseki T, Thewlis G. Overview inclusion assisted microstructure control in C–Mn and low alloy steel welds. Mater Sci Technol. 2005;21(8):867–879. doi: 10.1179/174328405X51703
  • Babu SS, David SA, Vitek JM, et al. Model for inclusion formation in low alloy steel welds. Sci Technol Weld Joining. 1999;4(5):276–284. doi: 10.1179/136217199101537879
  • Mills AR, Thewlis G, Whiteman JA. Nature of inclusions in steel weld metals and their influence on formation of acicular ferrite. Mater Sci Technol. 1987;3(12):1051–1061. doi: 10.1179/mst.1987.3.12.1051
  • Thewlis G. Transformation kinetics of ferrous weld metals. Mater Sci Technol. 1994;10(2):110–125. doi: 10.1179/mst.1994.10.2.110
  • Harrison PL. Private communication. 1987.
  • Koseki T. A review on inclusion-assisted microstructure control in C-Mn and low alloy steel welds. Weld World. 2005;49(5/6):22–28. doi: 10.1007/BF03263406
  • Evans GM. Effects of titanium on the microstructure and properties of C-Mn all-weld-metal deposits. Weld J. 1992;71(12):447s–454s.
  • Evans GM. Effects of micro-alloying elements in C-Mn steel weld metal. Weld World. 1993;31(1):12–19.
  • Evans GM Bailey N. Metallurgy of basic weld metal. Cambridge: Abington Publishing. 1997. ISBN 85573 243 2.
  • Fattahi M, Nabhani N, Hosseini M, et al. Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals. Micron. 2013;45:107–114. doi: 10.1016/j.micron.2012.11.004
  • Jafarlou H, Hassannezhad K, Asgharzadeh H, et al. Enhancement of mechanical properties of low carbon steel joints via graphene addition. Mater Sci Technol. 2018;34(4):455–467. doi: 10.1080/02670836.2017.1407543
  • Hart PHM. The influence of vanadium-microalloying on the weldability of steels. Paper presented at Vanadium 2001. Vanadium Application Technology. International Symposium, Beijing, China;2001 October 12–14. https://www.twi-global.com/technical-knowledge/published-papers/the-influence-of-vanadium-microalloying-on-the-weldability-of-steels-october-2001/
  • Honeycombe RWK. Steels – microstructure and properties. London: Edward Arnold; 1981.
  • Furuhara T, Shinyoshi T, Miyamoto G, et al. Multiphase crystallography in the nucleation of intragranular ferrite on MnS+ V (C, N) complex precipitate in austenite. ISIJ. 2003;43(12):2028–2037. doi: 10.2355/isijinternational.43.2028
  • Ricks RA, Howell PR, Barrite GS. The nature of acicular ferrite in HSLA steel weld metals. J Mater Sci. 1982;17:732–740. doi: 10.1007/BF00540369
  • Komizo, YI, Terasaki H, Yamada T. Morphological development for acicular ferrite in high strength pipeline steel weld metal. IPC 2008. Proceedings, 7th International Pipeline Conference, Calgary, AB, Canada, 2008 Sept 29 to Oct 3; New York, NY: American Society of Mechanical Engineers; 2008. Session: Materials Joining. Paper IPC2008-64677.
  • Wan XL, Wang HH, Cheng Land Wu KM. The formation mechanisms of interlocked microstructures in low-carbon high-strength steel weld metals. Mater Charact. 2012;67:41–51. doi: 10.1016/j.matchar.2012.02.007
  • Yang JR, Bhadeshia HKDH. Thermodynamics of the acicular ferrite transformation in alloy-steel weld deposits. In: David SA, editor. Advances in Welding Science and Technology. Proceedings, International Conference on Trends in Welding Research, Gatlinburg, TN, USA; 1986 May 18–22; Metals Park, OH: ASM International;1986. p. 187–191. ISBN 0-87170-245-2.
  • Yang JR, Bhadeshia HKDH. Acicular ferrite transformation in alloy-steel weld metals. J Mater Sci. 1991;26:839–845. doi: 10.1007/BF00588325
  • Rees GI, Bhadeshia HKDH. Thermodynamics of acicular ferrite nucleation. Mater Sci Technol. 1994;10(5):353–358. doi: 10.1179/mst.1994.10.5.353
  • Sugden AAB, Bhadeshia HKDH. Lower acicular ferrite. Metall Trans. 1989;20A(9):1811–1818. doi: 10.1007/BF02663212
  • Bhadeshia HKDH, Svensson L-E. Modelling the evolution of microstructure in steel weld metal. In: Cerjak H, Easterling KE, editors. Mathematical modelling of weld phenomena. London: The Institute of Materials; 1992. p. 109–182.
  • Thewlis G. Weldability of X100 linepipe. Sci Technol Weld Joining. 2000;5(6):365–377. doi: 10.1179/136217100101538434
  • Thewlis G. Materials perspective - classification and quantification of microstructures in steels. Mater Sci Technol. 2004;20(2):143–160. doi: 10.1179/026708304225010325
  • Yang JR, Bhadeshia HKDH. The dislocation density of acicular ferrite in steel welds. Welding J. 1990;69(8):305s–307s.
  • Thewlis G, Whiteman JA, Senogles DJ. Dynamics of austenite to ferrite phase transformations in ferrous weld metals. Mater Sci Technol. 1997;13(3):257–274. doi: 10.1179/mst.1997.13.3.257
  • Babu SS. The mechanism of acicular ferrite in weld deposits. Curr Opinions Solid State Mater Sci. 2004;8:267–278. doi: 10.1016/j.cossms.2004.10.001
  • Diaz-Fuentes M, Iza-Mendia A, Gutierrez I. Analysis of different acicular ferrite microstructures in low carbon steels by electron backscattered diffraction of their toughness behaviour. Metall Mater Trans. 2003;34A:2505–2516. doi: 10.1007/s11661-003-0010-7
  • Madariaga I, Gutierrez I, Bhadeshia HKDH. Acicular ferrite morphologies in a medium-carbon microalloyed steel. Metall Mater Trans. 2001;32A(9):2187–2197. doi: 10.1007/s11661-001-0194-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.