433
Views
32
CrossRef citations to date
0
Altmetric
Research Articles

A novel fed friction-stir (FFS) technology for nanocomposite joining

ORCID Icon &
Pages 89-100 | Received 29 Mar 2019, Accepted 10 Jun 2019, Published online: 20 Jun 2019

References

  • Khodabakhshi F, Haghshenas M, Sahraeinejad S, et al. Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminium alloy and high density polyethylene. Mater Charact. 2014;98:73–82. doi: 10.1016/j.matchar.2014.10.013
  • Khodabakhshi F, Haghshenas M, Chen J, et al. Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint. Sci Technol Weld Join. 2017;22(3):182–190. doi: 10.1080/13621718.2016.1211583
  • Huang Y, Meng X, Xie Y, et al. Friction stir welding/processing of polymers and polymer matrix composites. Composites Part A. 2018;105:235–257. doi: 10.1016/j.compositesa.2017.12.005
  • Kumar R, Singh R, Ahuja IPS, et al. Weldability of thermoplastic materials for friction stir welding – a state of art review and future applications. Composites Part B. 2018;137:1–15. doi: 10.1016/j.compositesb.2017.10.039
  • Khodabakhshi F, Ghasemi Yazdabadi H, Kokabi AH, et al. Friction stir welding of a P/M Al–Al2O3 nanocomposite: microstructure and mechanical properties. Mater Sci Eng A. 2013;585:222–232. doi: 10.1016/j.msea.2013.07.062
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Similar and dissimilar friction-stir welding of an PM aluminum-matrix hybrid nanocomposite and commercial pure aluminum: microstructure and mechanical properties. Mater Sci Eng A. 2016;666:225–237. doi: 10.1016/j.msea.2016.04.078
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Influence of hard inclusions on microstructural characteristics and textural components during dissimilar friction-stir welding of an PM Al–Al2O3–SiC hybrid nanocomposite with AA1050 alloy. Sci Technol Weld Join. 2017;22(5):412–427. doi: 10.1080/13621718.2016.1251714
  • Amancio-Filho ST, Bueno C, dos Santos JF, et al. On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures. Mater Sci Eng A. 2011;528(10–11):3841–3848. doi: 10.1016/j.msea.2011.01.085
  • Abibe AB, Sônego M, dos Santos JF, et al. On the feasibility of a friction-based staking joining method for polymer–metal hybrid structures. Mater Des 2016;92:632–642. doi: 10.1016/j.matdes.2015.12.087
  • Balle F, Eifler D. Statistical test planning for ultrasonic welding of dissimilar materials using the example of aluminum-carbon fiber reinforced polymers (CFRP) joints, Statistische Versuchsplanung zum Ultraschallschweißen artfremder Werkstoffe am Beispiel von Aluminium-Kohlefaser-Kunststoff-Verbunden (CFK). Materialwiss Werkstofftech. 2012;43(4):286–292. doi: 10.1002/mawe.201200943
  • Balle F, Wagner G, Eifler D. Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer – joints. Materialwiss Werkstofftech. 2007;38(11):934–938. doi: 10.1002/mawe.200700212
  • Derazkola HA, Kashiry Fard R, Khodabakhshi F. Effects of processing parameters on the characteristics of dissimilar friction-stir-welded joints between AA5058 aluminum alloy and PMMA polymer. Weld World. 2018;62(1):117–130. doi: 10.1007/s40194-017-0517-y
  • Goushegir SM, dos Santos JF, Amancio-Filho ST. Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: microstructure and mechanical performance. Mater Des. 2014;54:196–206. doi: 10.1016/j.matdes.2013.08.034
  • Huang Y, Meng X, Wang Y, et al. Joining of aluminum alloy and polymer via friction stir lap welding. J Mater Process Technol. 2018;257:148–154. doi: 10.1016/j.jmatprotec.2018.02.043
  • Min J, Li Y, Li J, et al. Friction stir blind riveting of carbon fiber-reinforced polymer composite and aluminum alloy sheets. Int J Adv Manuf Technol. 2014;76(5–8):1403–1410. doi: 10.1007/s00170-014-6364-8
  • Patel AR, Dalwadi CG, Rana HG. A review: dissimilar material joining of metal to polymer using friction stir welding (FSW). Int J Sci Technol Eng. 2016;2(10):702–706.
  • Liu FC, Liao J, Nakata K. Joining of metal to plastic using friction lap welding. Mater Des 2014;54:236–244. doi: 10.1016/j.matdes.2013.08.056
  • Moshwan R, Rahmat SM, Yusof F, et al. Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy. Int J Mater Res 2014;106(3):258–266. doi: 10.3139/146.111172
  • Ratanathavorn W, Melander A. Dissimilar joining between aluminium alloy (AA 6111) and thermoplastics using friction stir welding. Sci Technol Weld Join. 2015;20(3):222–228. doi: 10.1179/1362171814Y.0000000276
  • Derazkola HA, Khodabakhshi F, Simchi A. Friction-stir lap-joining of aluminium-magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility study. Sci Technol Weld Join. 2018;23(1):35–49. doi: 10.1080/13621718.2017.1323441
  • Derazkola HA, Elyasi M. The influence of process parameters in friction stir welding of Al–Mg alloy and polycarbonate. J Manuf Process. 2018;35:88–98. doi: 10.1016/j.jmapro.2018.07.021
  • Goushegir SM. Friction spot joining (FSpJ) of aluminum-CFRP hybrid structures. Weld World. 2016;60(6):1073–1093. doi: 10.1007/s40194-016-0368-y
  • Goushegir SM, dos Santos JF, Amancio-Filho ST. Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: microstructure and mechanical performance. Mater Des (1980–2015). 2014;54:196–206. doi: 10.1016/j.matdes.2013.08.034
  • Esteves JV, Goushegir SM, dos Santos JF, et al. Friction spot joining of aluminum AA6181-T4 and carbon fiber-reinforced poly(phenylene sulfide): effects of process parameters on the microstructure and mechanical strength. Mater Des. 2015;66:437–445. doi: 10.1016/j.matdes.2014.06.070
  • Goushegir SM, dos Santos JF, Amancio-Filho ST. Influence of process parameters on mechanical performance and bonding area of AA2024/carbon-fiber-reinforced poly(phenylene sulfide) friction spot single lap joints. Mater Des. 2015;83:431–442. doi: 10.1016/j.matdes.2015.06.044
  • Chen K, Chen B, Zhang S, et al. Friction spot welding between porous TC4 titanium alloy and ultra high molecular weight polyethylene. Mater Des 2017;132:178–187. doi: 10.1016/j.matdes.2017.06.071
  • Karami Pabandi H, Movahedi M, Kokabi AH. A new refill friction spot welding process for aluminum/polymer composite hybrid structures. Compos Struct. 2017;174:59–69. doi: 10.1016/j.compstruct.2017.04.053
  • Lambiase F, Paoletti A, Grossi V, et al. Friction assisted joining of aluminum and PVC sheets. J Manuf Process. 2017;29:221–231. doi: 10.1016/j.jmapro.2017.07.026
  • Khodabakhshi F, Gerlich AP. Potentials and strategies of solid-state additive friction-stir manufacturing technology: a critical review. J Manuf Process. 2018;36:77–92. doi: 10.1016/j.jmapro.2018.09.030
  • Derazkola HA, Simchi A. Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing. J Mech Behav Biomed Mater 2018;79:246–253. doi: 10.1016/j.jmbbm.2018.01.007
  • Junior WS, Emmler T, Abetz C, et al. Friction spot welding of PMMA with PMMA/silica and PMMA/silica-g-PMMA nanocomposites functionalized via ATRP. Polymer (Guildf). 2014;55(20):5146–5159. doi: 10.1016/j.polymer.2014.08.022
  • Oliveira PHF, Amancio-Filho ST, Dos Santos Jr JF, et al. Preliminary study on the feasibility of friction spot welding in PMMA. Mater Lett. 2010;64(19):2098–2101. doi: 10.1016/j.matlet.2010.06.050
  • Nagatsuka K, Yoshida S, Tsuchiya A, et al. Direct joining of carbon-fiber-reinforced plastic to an aluminum alloy using friction lap joining. Compos Part B. 2015;73:82–88. doi: 10.1016/j.compositesb.2014.12.029
  • Lambiase F, Paoletti A. Mechanical behavior of AA5053/polyetheretherketone (PEEK) made by friction assisted joining. Compos Struct. 2018;189:70–78. doi: 10.1016/j.compstruct.2018.01.045
  • Nguefack M, Popa AF, Rossignol S, et al. Preparation of alumina through a sol–gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite. Phys Chem Chem Phys. 2003;5(19):4279–4289. doi: 10.1039/B306170A
  • Morterra C, Magnacca G. A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today. 1996;27(3–4):497–532. doi: 10.1016/0920-5861(95)00163-8
  • Lin J, Chen H, Yuan Y, et al. Mechanochemically conjugated PMHS/nano-SiO2 hybrid and subsequent optimum grafting density study. Appl Surf Sci. 2011;257(21):9024–9032. doi: 10.1016/j.apsusc.2011.05.093
  • Kamiya H, Iijima M. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci Technol Adv Mater. 2010;11(4):044304. doi: 10.1088/1468-6996/11/4/044304
  • Gavade C, Singh NL, Singh D, et al. Study of dielectrical properties of swift heavy ion induced modifications in metal oxide/PMMA nanocomposites. Integr Ferroelectr. 2010;117(1):76–84. doi: 10.1080/10584587.2010.489427
  • Dallas P, Georgakilas V, Niarchos D, et al. Synthesis, characterization and thermal properties of polymer/magnetite nanocomposites. Nanotechnology. 2006;17(8):2046–2053. doi: 10.1088/0957-4484/17/8/043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.