514
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Numerical simulation of droplet transfer process in ultrasonic-assisted MIG welding

, , , &
Pages 179-189 | Received 02 Jul 2019, Accepted 03 Sep 2019, Published online: 12 Sep 2019

References

  • Chen MA, Chen J, Wu CS. Improvement of welding heat source patterns for TIG-MIG hybrid welding process. J Manuf Process. 2014;16(4):485–493. doi: 10.1016/j.jmapro.2014.06.002
  • Gao M, Zeng X, Yan J, et al. Microstructure characteristics of laser-MIG hybrid welded mild steel. Appl Surf Sci. 2008;254:5715–5721. doi: 10.1016/j.apsusc.2008.03.070
  • Zhang DQ, Jin X, Gao LX, et al. Effect of laser-arc hybrid welding on fracture and corrosion behaviour of AA6061-T6 alloy Mater. Sci Eng A. 2011;528:2748–2754. doi: 10.1016/j.msea.2010.12.021
  • Du M, Hong H, Han Y, et al. Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys. Int J Adv Manuf Tech. 2016;86(5–8):2301–2308. doi: 10.1007/s00170-016-8381-2
  • Fan CL, Fan YY, Lin SB, et al. Ultrasonic wave assisted GMAW. Weld J. 2012;91(3):91S–99S.
  • Fan CL, Fan YY, Lin SB, et al. Research on short circuiting transfer pattern of ultrasonic assisted GMAW method. Sci Technol Weld Joi. 2013;17(3):186–191. doi: 10.1179/1362171811Y.0000000058
  • Fan CL, Fan YY, Lin SB, et al. Arc characteristics of ultrasonic wave-assisted GMAW. Weld J. 2013;92(3):375s–380s.
  • Fan CL, Fan YY, Lin SB, et al. Process stability of ultrasonic-wave-assisted gas metal arc welding. Metal Mater Trans A. 2017;48(10):4615–4621. doi: 10.1007/s11661-017-4226-3
  • Fan CL, Lin SB, Xie WF, et al. Experimental investigation on acoustic control droplet transfer in ultrasonic-wave-assisted gas metal arc welding. Metal Mater Trans B. 2018;49(1):274–281. doi: 10.1007/s11663-017-1146-y
  • Dai WL. Effects of high-intensity ultrasonic-wave emission on the weld ability of aluminum alloy 7075-T6. Mater Lett. 2003;57(16):2447–2454. doi: 10.1016/S0167-577X(02)01262-4
  • Ma SL, Ma GH, et al. Design of MIG-ultrasonic hybrid welding Equipment. Hot Working Technol. 2014;19:166–168.
  • Zhang S, Ma G, Peng X, et al. Numerical simulation of the effects of bypass current on droplet transfer during AZ31B magnesium alloy DE-GMAW process based on FLUENT. Int J Adv Manuf Technol. 2017;90(1–4):857–863. doi: 10.1007/s00170-016-9438-y
  • Ding X, Li H, Yang L, et al. Numerical simulation of metal transfer process in tandem GMAW. Int J Adv Manuf Technol. 2013;69(1–4):107–112. doi: 10.1007/s00170-013-4999-5
  • Xueping D, Huan L, Lijun Y, et al. Numerical simulation of metal transfer process in tandem GMAW. Int J Adv Manuf Technol. 2013;69(1/4):107–112.
  • Wang F, Hou WK, Hu SJ, et al. Modeling and analysis of metal transfer in gas metal arc welding. J Phys D Appl Phys. 2003;36(9):1143–1152. doi: 10.1088/0022-3727/36/9/313
  • Fan HG, Kovacevic R. A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool. J Phys D Appl Phys. 2004;37:2531–2544. doi: 10.1088/0022-3727/37/18/009
  • Rao ZH, Liao SM, Tsai HL. Modeling of transport phenomena in GMAW using argon and argon-helium mixtures: part – The arc. Int J Heat Mass Transf. 2010;53:5707–5721. doi: 10.1016/j.ijheatmasstransfer.2010.08.009
  • Rao ZH, Liao SM, Tsai HL. Modeling of transport phenomena in GMAW using argon and argon-helium mixtures: Part – the metal. Int J Heat MassTransfer. 2010;53:5722–5732. doi: 10.1016/j.ijheatmasstransfer.2010.08.010
  • Murphy AB. A self-consistent three-dimensional model of the arc, electrode and weld pool in gas–metal arc welding. J Phys D Appl Phys. 2011;44:194009. doi: 10.1088/0022-3727/44/19/194009
  • Nemchinsky V. A droplet in the inter-electrode gap during gas metal arc welding. J Phys D Appl Phys. 2011;44:445203. doi: 10.1088/0022-3727/44/44/445203
  • Kadota K, Hirata Y. Numerical model of metal transfer using an electrically conductive liquid. Weld World. 2011;55:50–55. doi: 10.1007/BF03321320
  • Arif N, Lee JH, Yoo CD. Modelling of globular transfer considering momentum flux in GMAW. J Phys D Appl Phys. 2008;41:195503. doi: 10.1088/0022-3727/41/19/195503
  • Anzehaee MM, Haeri M. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process. ISA Trans. 2011;50:409–418. doi: 10.1016/j.isatra.2011.02.004
  • Arif N, Lee JH, Yoo CD. Force–displacement model for analysis of pulsed-GMAW. J Phys D Appl Phys. 2009;42:035504. doi: 10.1088/0022-3727/42/3/035504
  • Park AY, Kim SR, Hammad MA, et al. Modification of pinch instability theory for analysis of spray mode in GMAW. J Phys D Appl Phys. 2009;42:225503. doi: 10.1088/0022-3727/42/22/225503
  • Chen MA, Wu CS, Li SK, et al. Analysis of active control of metal transfer in modified pulsed GMAW. Sci Technol Weld Joining. 2007;12(1):10–14. doi: 10.1179/174329306X131848
  • Simpson SW. Metal transfer instability in gas metal arc welding. Sci Technol Weld Joining. 2009;14:262–273. doi: 10.1179/136217109X406901
  • Cui Y, Ma GH, Ma SL. Weld pool image processing in double arc welding. Hot Work Technol. 2013;42:160–162.
  • Tanaka M, Tashiro S, Satoh T, et al. Influence of shielding gas comparison on arc properties in TIG welding. Sci Technol Weld Joining. 2008;13(3):225–231. doi: 10.1179/174329308X283929

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.