346
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Basic alloy development of low-transformation-temperature fillers for AISI 410 martensitic stainless steel

ORCID Icon, , , & ORCID Icon
Pages 243-250 | Received 07 Aug 2019, Accepted 11 Oct 2019, Published online: 22 Oct 2019

References

  • Masubuchi K. Analysis of welded structures. Swansea: Pergamon; 1980.
  • Ericsson T. Residual stresses produced by quenching of martensitic steels. Compr Mater Process. 2014;12:271–298. doi: 10.1016/B978-0-08-096532-1.01209-7
  • Salerno G, Bennett C, Sun W, et al. On the interaction between welding residual stresses: A numerical and experimental investigation. Int J Mech Sci. 2018;144:654–667. doi: 10.1016/j.ijmecsci.2018.04.055
  • Withers PJ. Residual stress and its role in failure. Reports Prog. Phys. 2007;70:2211–2264.
  • Bhatti AA, Barsoum Z, Mee V Van Der, et al. Fatigue strength improvement of welded structures using new low transformation temperature filler materials. Procedia Eng. 2013;66:192–201. doi: 10.1016/j.proeng.2013.12.074
  • Wang H, Woo W, Kim DK, et al. Effect of chemical dilution and the number of weld layers on residual stresses in a multi-pass low-transformation-temperature weld. Mater Des. 2018;160:384–394. doi: 10.1016/j.matdes.2018.09.016
  • Van der Aa EM. Local cooling during welding: Prediction and control of residual stresses and buckling distortion. Delft: Delft University of Technology; 2007.
  • Sadeghi B, Shari H, Ra M, et al. Effects of post weld heat treatment on residual stress and mechanical properties of GTAW: The case of joining A537CL1 pressure vessel steel and A321 austenitic stainless steel. Eng Fail Anal. 2018;94:396–406. doi: 10.1016/j.engfailanal.2018.08.007
  • Kattoura M, Ramaiah S, Qian D, et al. Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy. Int J Fatigue. 2017;102:121–134. doi: 10.1016/j.ijfatigue.2017.04.016
  • Cheng X, Fisher JW, Prask HJ, et al. Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures. Int J Fatigue. 2003;25:1259–1269. doi: 10.1016/j.ijfatigue.2003.08.020
  • Rosen C-J, Gumenyuk A, Zhao H, et al. Influence of local heat treatment on residual stresses in electron beam welding. Sci Technol Weld Join. 2007;12:614–619. doi: 10.1179/174329307X227247
  • Gao H, Dutta RK, Huizenga RM, et al. Stress relaxation due to ultrasonic impact treatment on multi-pass welds. Sci Technol Weld Join. 2014;19:505–513. doi: 10.1179/1362171814Y.0000000219
  • Stone HJ, Bhadeshia HKDH, Withers PJ. In Situ monitoring of weld transformations to control weld residual stresses. Mater Sci Forum. 2009;571–572:393–398. doi: 10.4028/www.scientific.net/MSF.571-572.393
  • Rikken M, Pijpers R, Slot H, et al. A combined experimental and numerical examination of welding residual stresses. J Mater Process Technol. 2018;261:98–106. doi: 10.1016/j.jmatprotec.2018.06.004
  • Gibmeier J, Obelode E, Altenkirch J, et al. Residual stress in steel fusion welds joined using low transformation temperature (LTT) filler material. Mater Sci Forum. 2013;768–769:620–627. doi: 10.4028/www.scientific.net/MSF.768-769.620
  • Porter DA, Easterling KE, Sherif MY. Phase transformations in metals and alloys. 3rd ed. Boca Raton: CRC Press; 2009.
  • Jones WKC. A model for stress accumulation in steels during welding. Met Technol 1977;11:557–566.
  • Altenkirch J, Gibmeier J, Kromm A, et al. In situ study of structural integrity of low transformation temperature (LTT)-welds. Mater Sci Eng A. 2011;528:5566–5575. doi: 10.1016/j.msea.2011.03.091
  • Ooi SW, Garnham JE, Ramjaun TI. Review: Low transformation temperature weld filler for tensile residual stress reduction. Mater Des. 2014;56:773–781. doi: 10.1016/j.matdes.2013.11.050
  • Kou S. Welding metallurgy. 2nd ed. Hoboken: Wiley-Interscience; 2002.
  • Moreira DC, Furtado HC, Buarque JS, et al. Failure analysis of AISI 410 stainless-steel piston rod in spillway floodgate. Eng Fail Anal. 2019;97:506–517. doi: 10.1016/j.engfailanal.2019.01.035
  • Jayaganth A, Jayakumar K, Deepak A, et al. Experimental studies on drilling of 410 stainless steel. Mater Today Proc. 2018;5:7168–7173. doi: 10.1016/j.matpr.2017.11.382
  • Lippold JC, Kotecki DJ. Welding metallurgy and weldability of stainless steels. Hoboken: Wiley-Interscience; 2005.
  • Nebhnani MC, Bhakta UC, Gowrisankar I, et al. Failure of a martensitic stainless steel pipe weld in a fossil fuel power plant. Eng Fail Anal. 2002;9:277–286. doi: 10.1016/S1350-6307(01)00019-X
  • 2013 AE-13a: Standard test method for determining residual stresses by the hole-drilling strain-gage method. 2013.
  • Tsuchiya K, Nojiri T, Ohtsuka H, et al. Effect of Co and Ni on martensitic transformation and magnetic properties in Fe-Pd ferromagnetic shape memory alloys. Mater Trans. 2005;44:2499–2502. doi: 10.2320/matertrans.44.2499
  • Gulyaev AP, Shlyamnev AP, Sorokina NA. Effect of alloying on the martensitic transformation in stainless steels. Met Sci Heat Treat. 1975;17:755–757. doi: 10.1007/BF00703061
  • Wu S, Wang D, Zhang Z, et al. Mechanical properties of low-transformation-temperature weld metals after low-temperature postweld heat treatment. Sci Technol Weld Join. 2019;24:112–120. doi: 10.1080/13621718.2018.1492776
  • Thomas SH, Liu S. Analysis of low transformation temperature welding (LTTW) consumables – distortion control and evolution of stresses. Sci Technol Weld Join. 2014;19:392–401. doi: 10.1179/1362171814Y.0000000199
  • Totten GE. Steel heat treatment handbook. 2nd ed. Boca Raton: CRC Press; 2006.
  • Jiang W, Chen W, Woo W, et al. Effects of low-temperature transformation and transformation-induced plasticity on weld residual stresses: numerical study and neutron diffraction measurement. Mater Des. 2018;147:65–79. doi: 10.1016/j.matdes.2018.03.032
  • Deng D, Murakawa H. Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel. Comput Mate Sci. 2013;78:55–62. doi: 10.1016/j.commatsci.2013.05.023
  • Murakawa H, Miloslav B, Adan V, et al. Effect of phase transformation onset temperature on residual stress in welded thin steel plates. Join Weld Res Inst. 2008;37:75–80.
  • Jiao ZB, Luan JH, Zhang ZW, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels. Acta Mater. 2013;61:5996–6005. doi: 10.1016/j.actamat.2013.06.040
  • Folkhard E. Welding metallurgy of stainless steels. 1st ed. Wien: Springer-Verlag Wien; 1988.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.