504
Views
33
CrossRef citations to date
0
Altmetric
Research Articles

Susceptibility of magnesium alloys to solidification cracking

ORCID Icon &
Pages 251-257 | Received 11 Sep 2019, Accepted 11 Oct 2019, Published online: 23 Oct 2019

References

  • Liu L. Welding and joining of magnesium alloys. Cambridge: Woodhead Publishing; 2010.
  • Kou S, Firouzdor V, Haygood I. Hot cracking in welds of aluminum and magnesium alloys. In: Lippold J, Böllinghaus T, Cross C.E., editors. Hot cracking phenomena in welds III. Berlin: Springer; 2011. p. 3–23.
  • Czerwinski F. Welding and joining of magnesium alloys. In: Magnesium alloys—design, processing and properties. Rijeka: Intech; 2011. p. 469–491.
  • Liu L, Dong C. Gas tungsten-arc filler welding of AZ31 magnesium alloy. Mater Lett. 2006;60(17–18):2194–2197. doi: 10.1016/j.matlet.2005.12.120
  • Marya M, Edwards G. Influence of laser beam variables on AZ91D weld fusion zone microstructure. Sci Technol Weld Join. 2002;7(5):286–293. doi: 10.1080/174329313X13789830157627
  • Huang C, Cheng C, Chou C, et al. Hot cracking in AZ31 and AZ61 magnesium alloy. J Mater Sci Technol. 2011;27(7):633–640. doi: 10.1016/S1005-0302(11)60118-7
  • Yu Z, Yan H, Chen J, et al. Effect of Zn content on the microstructures and mechanical properties of laser beam-welded ZK series magnesium alloys. J Mater Sci. 2010;45(14):3797–3803. doi: 10.1007/s10853-010-4434-3
  • Kierzek A, Adamiec J. Evaluation of susceptibility to hot cracking of magnesium alloy joints in variable stiffness condition. Arch Metall Mater. 2011;56(3):759–767. doi: 10.2478/v10172-011-0084-y
  • Al-Kazzaz H, Medraj M, Cao X, et al. Effect of welding speed on Nd: YAG laser weldability of ZE41A-T5 magnesium sand castings). 44th Annual Conference of Metallurgists of CIM; Calgary, Canada; 2005.
  • Lathabai S, Barton K, Harris D, et al. Welding and weldability of AZ31B by gas tungsten arc and laser beam welding processes. In: Mathaudhu S.N., Luo A.A., Neelameggham N.R., et al., editors. Essential readings in magnesium technology. Cham: Springer; 2003. p. 493–498.
  • Ścibisz B, Adamiec J. Evaluation of susceptibility to hot cracking of WE43 magnesium alloy welds in transvarestraint test. Arch Metall Mater. 2010;55(1):131–141.
  • Sun DX, Cui DL, Shi JT. Hot cracking and microstructure of welding joint of magnesium alloy AZ91D. Adv Mater Res. 2013;753:435–438.
  • Lang B, Sun DQ, Xuan ZZ, et al. Hot cracking of resistance spot welded magnesium alloy. ISIJ Int. 2008;48(1):77–82. doi: 10.2355/isijinternational.48.77
  • Niknejad S, Liu L, Lee M-Y, et al. Resistance spot welding of AZ series magnesium alloys: effects of aluminum content on microstructure and mechanical properties. Mater Sci Eng: A. 2014;618:323–334. doi: 10.1016/j.msea.2014.08.013
  • Zhou W, Long T, Mark C. Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D. Mater Sci Technol. 2007;23(11):1294–1299. doi: 10.1179/174328407X213026
  • Sun DX, Da QS, Gu XY, et al. Hot cracking of metal inert gas arc welded magnesium alloy AZ91D. ISIJ Int. 2009;49(2):270–274. doi: 10.2355/isijinternational.49.270
  • Adamiec J. Evaluation of susceptibility of the ZRE1 alloy to hot cracking in conditions of forced strain. Arch Foundry Eng. 2010;10(1):345–350.
  • Yu Z, Yan H, Chen S, et al. Method for welding highly crack susceptible magnesium alloy ZK60. Sci Technol Weld Join. 2010;15(5):354–360. doi: 10.1179/136217110X12717725779661
  • Lukin VI, Dobrynina IS. Weldability of cast magnesium alloys of the Mg-Zn-Zr system. Weld Int. 1998;12(10):801–803. doi: 10.1080/09507119809448980
  • Kou S. Welding metallurgy. 2nd ed. Hoboken (NJ): Wiley; 2003.
  • Flemings MC. Solidification processing. New York: McGraw-Hill; 1974.
  • Fisher DJ, Kurz W. Unpublished research. Department of Materials, EPFL-Swiss Institute of Technology Lausanne, Switzerland; 1978.
  • Kou S. A criterion for cracking during solidification. Acta Mater. 2015;88:366–374. doi: 10.1016/j.actamat.2015.01.034
  • Campbell J. Private communications on cracking during solidification. United Kingdom; 2014.
  • Campbell J. Castings. 2nd ed. Oxford: Butterworth Heinemann; 2003.
  • Coniglio N, Cross CE. Mechanisms for solidification crack initiation and growth in aluminum welding. Metall Mater Trans A. 2009;40(11):2718–2728. doi: 10.1007/s11661-009-9964-4
  • Kou S. Transport phenomena and materials processing. Hoboken (NJ): Wiley; 1996.
  • Kou S. A simple index for predicting the susceptibility to solidification cracking. Weld J. 2015;94:374s–388s.
  • Liu J, Kou S. Effect of diffusion on susceptibility to cracking during solidification. Acta Mater. 2015;100:359–368. doi: 10.1016/j.actamat.2015.08.064
  • Liu J, Kou S. Crack susceptibility of binary aluminum alloys during solidification. Acta Mater. 2016;110:84–94. doi: 10.1016/j.actamat.2016.03.030
  • Liu J, Duarte HP, Kou S. Evidence of back diffusion reducing cracking during solidification. Acta Mater. 2017;122:47–59. doi: 10.1016/j.actamat.2016.09.037
  • Liu J, Kou S. Susceptibility of ternary aluminum alloys to cracking during solidification. Acta Mater. 2017;125:513–523. doi: 10.1016/j.actamat.2016.12.028
  • Soysal T, Kou S. Predicting effect of filler metals on solidification cracking susceptibility of 2024 and 6061 Al. Sci Technol Weld Join. 2019;24(6):559–565. doi: 10.1080/13621718.2019.1570683
  • Dowd JD. Weld cracking of aluminum alloys. Weld J. 1952;31:448s–456s.
  • Dudas JH. Preventing weld cracks in high strength aluminum alloys. Weld J. 1966;45:3.
  • AlcoTec Wire Corporation. Aluminum filler alloy chart. Available from: http://www.alcotec.com
  • Maxal International Inc. Maxal guide for aluminum welding. 2012 Sep. p. 43 Available from: http://maxal.com
  • Soysal T, Kou S. A simple test for solidification cracking susceptibility and filler metal effect. Weld J. 2017;96(10):389s–401s.
  • Soysal T, Kou S. A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction. Acta Mater. 2018;143:181–197. doi: 10.1016/j.actamat.2017.09.065
  • Soysal T, Kou S. Effect of filler metals on solidification cracking susceptibility of Al alloys 2024 and 6061. J Mater Process Technol. 2019;266:421–428. doi: 10.1016/j.jmatprotec.2018.11.022
  • Savage WF. The varestraint test. Weld J. 1965;44:433s–442s.
  • Senda T, Matsuda F, Takano G, et al. Fundamental Investigations on solidification crack susceptibility for weld metals with trans-varestraint test. Trans Jpn Weld Soc. 1971;2(2):141–162.
  • Pandat. Phase diagram. Calculation software package for multicomponent systems. Madison (WI): Computherm; 2019.
  • PanMagnesium. Thermodynamic database for magnesium alloys. Madison (WI): Computherm; 2019.
  • Cao G, Haygood I, Kou S. Onset of hot tearing in Ternary Mg-Al-Sr alloy castings. Metal Mater Trans A. 2010;41(8):2139–2150. doi: 10.1007/s11661-010-0248-9
  • Cao G, Kou S. Hot tearing of ternary Mg−Al−Ca alloy castings. Metal Mater Trans A. 2006;37(12):3647–3663. doi: 10.1007/s11661-006-1059-x
  • Cao G, Kou S. Real-time monitoring of hot tearing in AZ91E magnesium casting. Trans Am Foundry Soc. 2007;115:7–34.
  • Cao G, Zhang C, Cao H, et al. Hot-tearing susceptibility of ternary Mg-Al-Sr alloy castings. Metal Mater Trans A. 2010;41(3):706–716. doi: 10.1007/s11661-009-0134-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.