338
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Investigating delayed cracking behaviour in laser welds of high strength steel sheets using an X-ray transmission in-situ observation system

, , &
Pages 377-382 | Received 04 Oct 2019, Accepted 19 Dec 2019, Published online: 22 Jan 2020

References

  • Hong KM, Shin YC. Prospects of laser welding technology in the automotive industry: a review. J Mater Process Technol. 2017;245:46–69. doi: 10.1016/j.jmatprotec.2017.02.008
  • Billur E, Son HS. Hot stamping of ultra high-strength steels. Switzerland: Springer International Publishing AG. Blank Materials. 2018: 45–76.
  • Fonstein N. Advanced high strength sheet steels. Switzerland: Springer International Publishing AG. Martensitic Sheet Steels. 2018: 259–274.
  • Yurioka N, Suzuki H. Hydrogen assisted cracking in C–Mn and low alloy steel weldments. Int Mater Rev. 1990;35(1):217–249. doi: 10.1179/imr.1990.35.1.217
  • Padhy GK, Komizo Y. Diffusible hydrogen in steel weldments: a status review. Trans JWRI. 2013;42(1):39–62.
  • Kiefer JH. Effects of moisture contamination and welding parameters on diffusible hydrogen. Weld J. 1996;75(5):155–161.
  • Harwig DD, Longenecker DP, Cruz JH. Effects of welding parameters and electrode atmospheric exposure on the diffusible hydrogen content of gas shielded flux cored arc welds. Weld J. 1999;78(9):314–321.
  • Schwedler O, Zinke M, Jüttner S. Determination of hydrogen input in welded joints of press-hardened 22MnB5 steel. Weld World. 2014;58(3):339–346. doi: 10.1007/s40194-014-0119-x
  • Buehrle J, Bea M, Brockmann R. Laser remote process technology on automotive manufacture. Proc. the FISITA 2012 World Automotive Cong. 2012:89–97.
  • Kawahito Y, Matsumoto N, Mizutani M, et al. Characterisation of plasma induced during high power fibre laser welding of stainless steel. Sci Technol Weld J. 2008;13(8):744–748. doi: 10.1179/136217108X329313
  • Aragón C, Aguilera JA. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectrochim Acta B. 2008;63(9):893–916. doi: 10.1016/j.sab.2008.05.010
  • Chauveau D. Review of NDT and process monitoring techniques usable to produce high-quality parts by welding or additive manufacturing. Weld World. 2018;62(5):1097–1118. doi: 10.1007/s40194-018-0609-3
  • von Witzendorff P, Kaierle S, Suttmann O, et al. In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility. Metall Mat Trans A. 2015;46(4):1678–1688. doi: 10.1007/s11661-015-2749-z
  • Kadoi K, Fujinaga A, Yamamoto M, et al. The effect of welding conditions on solidification cracking susceptibility of type 310S stainless steel during laser welding using an in-situ observation technique. Weld World. 2013;57(3):383–390.
  • Okuda N, Ogata Y, Nishikawa Y, et al. Hydrogen-induced cracking susceptibility in high-strength weld metal. Weld J. 1987;66(5):141–146.
  • Phalen DI, Vaughan DA. The role of surface stress on hydrogen absorption by 4340 steel. Corrosion. 1968;24:243–246. doi: 10.5006/0010-9312-24.8.243

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.