343
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

Formation and control of the residual δ-ferrite in 9% Cr-HAZ of Alloy 617/9% Cr dissimilar welded joint

, , , , , , , , & show all
Pages 398-406 | Received 21 Nov 2019, Accepted 15 Jan 2020, Published online: 29 Jan 2020

References

  • Xiao B, Xu LY, Zhao L, et al. Transient creep behavior of a novel tempered martensite ferritic steel G115. Mater Sci Eng A. 2018;716:284–295. doi: 10.1016/j.msea.2018.01.047
  • Shinozaki K, Li D, Kuroki H, et al. Observation of type IV cracking in welded joints of high chromium ferritic heat resistant steels. Sci Technol Weld Joining. 2003;8(4):289–295. doi: 10.1179/136217103225005444
  • Rayes MM E, El-Danaf EA. High temperature deformation behavior of as-produced and retired 9-12% Cr power plant steel. Mater Sci Eng A. 2017;697:203–210. doi: 10.1016/j.msea.2017.05.014
  • Ding K, Wang P, Liu X, et al. Formation of lamellar carbides in Alloy 617-HAZ and their role in the impact toughness of Alloy 617/9% Cr dissimilar welded joint. J Mater Eng Perform. 2018;27(11):6027–6039. doi: 10.1007/s11665-018-3668-0
  • Ding K, Ji HJ, Liu X, et al. Prevention of carbon migration in 9% Cr/CrMoV dissimilar welded joint by adding tungsten inert gas overlaying layer. J Iron Steel Res Int. 2018;25(8):847–853. doi: 10.1007/s42243-018-0124-1
  • Logan BP, Toumpis AI, Galloway AM, et al. Dissimilar friction stir welding of duplex stainless steel to low alloy structural steel. Sci Technol Weld Joining. 2016;21(1):11–19. doi: 10.1179/1362171815Y.0000000063
  • Pamnani R, Sharma GK, Mahadevan S, et al. Residual stress studies on arc welding joints of naval steel (DMR-249A). J Manuf Process. 2015;20:104–111. doi: 10.1016/j.jmapro.2015.09.004
  • Gustafsson M, Thuvander M, Bergqvist EL, et al. Effect of welding procedure on texture and strength of nickel based weld metal. Sci Technol Weld Joining. 2007;12(6):549–555. doi: 10.1179/174329307X213800
  • Huang BS, Yang J, Lu DH, et al. Study on the microstructure, mechanical properties and corrosion behaviour of S355JR/316L dissimilar welded joint prepared by gas tungsten arc welding multi-pass welding process. Sci Technol Weld Joining. 2016;21(5):381–388. doi: 10.1080/13621718.2015.1122152
  • Arun D, Devendranath Ramkumar K, Vimala R. Multi-pass arc welding techniques of 12 mm thick super-duplex stainless steel. J Mater Process Technol. 2019;271:126–143. doi: 10.1016/j.jmatprotec.2019.03.031
  • Chen XZ, Huang YM, Shen Z, et al. Effect of thermal cycle on microstructure and mechanical properties of CLAM steel weld CGHAZ. Sci Technol Weld Joining. 2013;18(4):272–278. doi: 10.1179/1362171812Y.0000000095
  • Pandey C, Mohan Mahapatra M, Kumar P, et al. Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state. J Mater Process Technol. 2019;263:241–255. doi: 10.1016/j.jmatprotec.2018.08.032
  • Manugula VL, Rajulapati KV, Reddy GM, et al. Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states. Mater Sci Eng A. 2017;698:36–45. doi: 10.1016/j.msea.2017.05.036
  • Oñoro J. Martensite microstructure of 9-12%Cr steels weld metals. J Mater Process Technol. 2006;180(1):137–142. doi: 10.1016/j.jmatprotec.2006.05.014
  • Sakthivel T, Vasudevan M, Laha K, et al. Comparison of creep rupture behaviour of type 316L(N) austenitic stainless steel joints welded by TIG and activated TIG welding processes. Mater Sci Eng A. 2011;528(22):6971–6980. doi: 10.1016/j.msea.2011.05.052
  • David SA, Siefert JA, Feng Z. Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. Sci Technol Weld Joining. 2013;18(8):631–651. doi: 10.1179/1362171813Y.0000000152
  • Moon J, Ha HY, Lee TH. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe-18Cr-10Mn-N austenitic stainless steel. Mater Charact. 2013;82:113–119. doi: 10.1016/j.matchar.2013.05.011
  • Wang YY, Kannan R, Zhang L, et al. Microstructural analysis of the as-welded heat-affected zone of a Grade 91 steel heavy section weldment. Weld J. 2017;96(6):203–219.
  • Pandey C, Mahapatra MM, Kumar P, et al. Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint. Mater Sci Eng A. 2018;712:720–737. doi: 10.1016/j.msea.2017.12.039
  • Pandey C, Mahapatra MM, Kumar P, et al. Dissimilar joining of CSEF steels using autogenous tungsten-inert gas welding and gas tungsten arc welding and their effect on δ-ferrite evolution and mechanical properties. J Manuf Process. 2018;31:247–259. doi: 10.1016/j.jmapro.2017.11.020
  • Grobner PJ, Hagel WC. The effect of molybdenum on high-temperature properties of 9 pct Cr steels. Metall Trans A. 1980;11(4):633–642. doi: 10.1007/BF02670701
  • Wu QJ, Lu FG, Cui HC, et al. Soft zone formation by carbon migration and its effect on the high-cycle fatigue in 9% Cr-CrMoV dissimilar welded joint. Mater Lett. 2015;141:242–244. doi: 10.1016/j.matlet.2014.08.158
  • Liu W, Liu X, Lu FG, et al. Creep behavior and microstructure evaluation of welded joint in dissimilar modified 9Cr-1Mo steels. Mater Sci Eng A. 2015;644:337–346. doi: 10.1016/j.msea.2015.07.068
  • Xu YB, Hu ZP, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite. Mater Sci Eng A. 2017;688:40–55. doi: 10.1016/j.msea.2017.01.063
  • Gao YL, Zhao BG, Vlassak JJ, et al. Nanocalorimetry: door opened for in situ material characterization under extreme non-equilibrium conditions. Prog Mater Sci. 2019;104:53–137. doi: 10.1016/j.pmatsci.2019.04.001
  • Chen ZR, Lu YH, Ding XF, et al. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal. Mater Charact. 2016;121:166–174. doi: 10.1016/j.matchar.2016.09.033
  • Mittal R, Sidhu BS. Microstructures and mechanical properties of dissimilar T91/347H steel weldments. J Mater Process Technol. 2015;220:76–86. doi: 10.1016/j.jmatprotec.2015.01.008
  • Sam S, Das CR, Ramasubbu V, et al. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel. J Nucl Mater. 2014;455(1):343–348. doi: 10.1016/j.jnucmat.2014.07.008
  • Kobayashi S, Sawada K, Hara T, et al. The formation and dissolution of residual δ ferrite in ASME Grade 91 steel plates. Mater Sci Eng A. 2014;592:241–248. doi: 10.1016/j.msea.2013.10.058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.