461
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Effect of transverse magnetic field on weld formation and microstructure & properties of high-speed hot-wire tungsten inert gas welding joints

, , , &
Pages 407-414 | Received 20 Jan 2020, Accepted 10 Feb 2020, Published online: 19 Feb 2020

References

  • Hori K, Watanabe H, Myoga T, et al. Development of hot wire TIG welding methods using pulsed current to heat filler wire-research on pulse heated hot wire TIG welding processes. Weld Int. 2004;18(6):456–468. doi: 10.1533/wint.2004.3281
  • Goldsberry C. Hot-wire TIG: not new but gaining appeal. Pentons Weld Mag. 2007;80(9):24.
  • Lv SX, Tian XB, Wang HT, et al. Arc heating hot wire assisted arc welding technique for low resistance welding wire. Sci Technol Weld J. 2007;12(5):431–435. doi: 10.1179/174329307X213828
  • Guo LL, Zheng HL, Liu SH, et al. Formation quality Optimization and corrosion performance of Inconel 625 weld overlay using hot wire pulsed TIG. Rare Metal Mat Eng. 2016;45(9):2219–2226. doi: 10.1016/S1875-5372(17)30006-1
  • Brownlie F, Anene C, Hodgkiess T, et al. Comparison of hot wire TIG Stellite 6 weld cladding and lost wax cast Stellite 6 under corrosive wear conditions. Wear. 2018;404(6):71–81. doi: 10.1016/j.wear.2018.03.004
  • He H, Wu CS, Lin SB, et al. Pulsed TIG welding–brazing of aluminum–stainless steel with an Al-Cu Twin Hot wire. J Mater Eng Perform. 2019;28(2):1180–1189. doi: 10.1007/s11665-018-3848-y
  • Liu AG, Zhang XP, Zheng CB, et al. A novel molten wire tungsten inert gas welding process. Sci Technol Weld J. 2019;24(7):609–616. doi: 10.1080/13621718.2019.1577035
  • Fan CL, Liang YC, Yang CL, et al. High frequency induction hot wire TIG welding of aluminum alloy. Trans China Weld Inst. 2006;27(7):53–56.
  • Chen J, Wu CS. Numerical analysis of forming mechanism of hump bead in high speed GMAW. Weld World. 2010;54(9-10):286–291. doi: 10.1007/BF03266741
  • Xu GX, Cao QN, Hu QX, et al. Modelling of bead hump formation in high speed gas metal arc welding. Sci Technol Weld J. 2016;21(8):700–710. doi: 10.1080/13621718.2016.1146427
  • Wang L, Wu CS, Gao JQ. Suppression of humping bead in high speed GMAW with external magnetic field. Sci Technol Weld J. 2016;21(2):131–139. doi: 10.1179/1362171815Y.0000000074
  • Wang L, Chen J, Wu CS, et al. Backward flowing molten metal in weld pool and its influence on humping bead in high-speed GMAW. J Mater Process Technol. 2016;237:342–350. doi: 10.1016/j.jmatprotec.2016.06.028
  • Wang L, Wu CS, Chen J, et al. Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding. Int J Heat Mass Tran. 2018;116:1282–1291. doi: 10.1016/j.ijheatmasstransfer.2017.09.130
  • Sunar BA, Angga F, Haikal B, et al. Improving weld penetration by employing of magnetic poles’ configurations to an autogenous tungsten inert gas (TIG) welding. Int J Adv Manuf Technol. 2018;99(1):1603–1613.
  • Chen R, Jiang P, Shao X, et al. Improvement of low-temperature impact toughness for 304 weld joint produced by laser-MIG hybrid welding under magnetic field. J Mater Process Technol. 2017;47(2):306–317. doi: 10.1016/j.jmatprotec.2017.04.004
  • Zhang X, Zhao ZY, Wang CM, et al. The effect of external longitudinal magnetic field on laser-MIG hybrid welding. Int J Adv Manuf Technol. 2016;85(5-8):1735–1743. doi: 10.1007/s00170-015-8035-9
  • Zhang X, Zhao ZY, Mi GY, et al. Effect of external longitudinal magnetic field on arc plasma characteristics and droplet transfer during laser-MIG hybrid welding. Int J Adv Manuf Technol. 2017;92(13):2185–2195. doi: 10.1007/s00170-017-0293-2
  • Meng XM, Qin GL, Zou ZD. Investigation of humping defect in high speed gas tungsten arc welding by numerical modelling. Mater Design. 2016;94:69–78. doi: 10.1016/j.matdes.2016.01.019
  • Meng XM, Qin GL, Zou ZD. Sensitivity of driving forces on molten pool behavior and defect formation in high-speed gas tungsten arc welding. Int J Heat Mass Trans. 2017;107:1119–1128. doi: 10.1016/j.ijheatmasstransfer.2016.11.025
  • Meng XM, Qin GL. A theoretical study of molten pool behavior and humping formation in full penetration high-speed gas tungsten arc welding. Int J Heat Mass Trans. 2019;132:143–153. doi: 10.1016/j.ijheatmasstransfer.2018.12.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.