387
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of boron in suppressing the liquid metal embrittlement in drawable grade of steel

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 130-135 | Received 10 Aug 2020, Accepted 07 Nov 2020, Published online: 23 Nov 2020

References

  • Razmpoosh MH, Macwan A, Biro E, et al. Liquid metal embrittlement in laser beam welding of Zn-coated 22MnB5 steel. Mater Des. 2018;155:375–383.
  • Bhattacharya D. Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. Mater Sci Technol. 2018;34(15):1809–1829.
  • Maciejewski J. Liquid metal induced embrittlement in fuel line braze joints. J Fail Anal Prev. 2005;5(2):55–60.
  • Lee CW, Fan DW, Sohn IR, et al. Liquid-metal-induced embrittlement of Zn-coated hot stamping steel. Metall Mater Trans A. 2012;43(13):5122–5127.
  • DiGiovanni C, Biro E, Zhou NY. Impact of liquid metal embrittlement cracks on resistance spot weld static strength. Sci Technol Weld Joining. 2019;24(3):218–224.
  • Razmpoosh MH, Biro E, Chen DL, et al. Liquid metal embrittlement in laser lap joining of TWIP and medium-manganese TRIP steel: the role of stress and grain boundaries. Mater Charact. 2018;145:627–633.
  • Cho L, Kang H, Lee C, et al. Microstructure of liquid metal embrittlement cracks on Zn-coated 22MnB5 press-hardened steel. Scr Mater. 90–91;2014:25–28.
  • Kang H, Cho L, Lee C, et al. Zn penetration in liquid metal embrittled TWIP steel. Metall Mater Trans A. 2016;47(6):2885–2905.
  • Bhattacharya D, Cho L, van der Aa E, et al. Transgranular cracking in a liquid Zn embrittled high strength steel. Scr Mater. 2020;175:49–54.
  • Savage WF, Nippes EF, Stanton RP. Intergranular attack of steel by molten copper. Weld J. 1978;57:9s–16s.
  • Fukikoshi T, Watanabe Y, Miyazawa Y, et al. Brazing of copper to stainless steel with a low-silver-content brazing filler metal. IOP Conf Ser Mater Sci Eng 61;2014:012016.
  • Ishida T. The interaction of molten copper with solid iron. J Mater Sci. 1986;21(4):1171–1179.
  • Lee HW, Sung JH. Effect of weld metal copper content on HAZ cracking in austenitic stainless steel welded with Al brass. Sci Technol Weld Joining. 2005;10(2):145–148.
  • Chen S, Yu X, Huang J, et al. Interfacial ferrite band formation to suppress intergranular liquid copper penetration of solid steel. J Alloys Compd. 2019;773:719–729.
  • Lee H, Jo MC, Sohn SS, et al. Microstructural evolution of liquid metal embrittlement in resistance-spot-welded galvanized twinning-induced plasticity (TWIP) steel sheets. Mater Charact. 2019;147:233–241.
  • Hashimoto M, Ishida Y, Wakayama S, et al. Atomistic studies of grain boundary segregation in Fe-P and Fe-B alloys—II. Electronic structure and intergranular embrittlement. Acta Metall. 1984;32(1):13–20.
  • Wachowicz E, Kiejna A. Effect of impurities on grain boundary cohesion in bcc iron. Comput Mater Sci. 2008;43(4):736–743.
  • Krasko GL, Olson GB. Effect of boron, carbon, phosphorus and sulphur on intergranular cohesion in iron. Solid State Commun. 1990;76(3):247–251.
  • Braithwaite JS, Rez P. The effect of impurities on grain boundary cohesion in iron. Microsc Microanal. 2003;9(S02):590–591.
  • Kim S, Kang Y, Lee C. Variation in microstructures and mechanical properties in the coarse-grained heat-affected zone of low-alloy steel with boron content. Mater Sci Eng A. 2013;559:178–186.
  • Laha K, Kyono J, Sasaki T, et al. Improved creep strength and creep ductility of type 347 austenitic stainless steel through the self-healing effect of boron for creep cavitation. Metall Mater Trans A. 2005;36(2):399–409.
  • Song SH, Guo AM, Shen DD, et al. Effect of boron on the hot ductility of 2.25Cr1Mo steel. Mater Sci Eng A. 2003;360(1):96–100.
  • Hwang B, Suh D-W, Kim S-J. Austenitizing temperature and hardenability of low-carbon boron steels. Scr Mater. 2011;64(12):1118–1120.
  • Deva A, Jha BK, Mishra NS. Microstructural evolution during batch annealing of boron containing aluminum-killed steel. J Mater Sci. 2009;44(14):3736–3740.
  • Lee KM, Huh M, Park SH, et al. Effect of texture components on the Lankford parameters in ferritic stainless steel sheets. ISIJ Int. 2011;52:522–529.
  • Quinto DT, Hughes IF. The influence of boron uponrmvalue in aluminum killed drawing quality steel. Metall Trans A. 1976;7(2):165–171.
  • Yu ZS, Li RF, Zhou FM, et al. Joint evolution and strengthening mechanisms in arc brazed galvanised steels with Cu97Si3 filler. Mater Sci Technol. 2004;20(11):1479–1483.
  • Makwana P, Shome M, Goecke S-F, et al. Gas metal arc brazing of galvannealed steel sheets. Sci Technol Weld Joining. 2016;21(7):600–606.
  • Jun HJ, Kang JS, Seo DH, et al. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels. Mater Sci Eng A. 2006;422(1):157–162.
  • Hänsel H, Stratmann L, Keller H, et al. Effects of the grain boundary segregants P, S, C and N on the grain boundary self-diffusivity in α-iron. Acta Metall. 1985;33(4):659–665.
  • Jahazi M, Jonas JJ. The non-equilibrium segregation of boron on original and moving austenite grain boundaries. Mater Sci Eng A. 2002;335(1):49–61.
  • Borisov VT, Golikov VM, Shcherbedinskii GC. Connection between diffusion coefficients and energies of grain boundaries. Phys Met Met. 1964;17(6):881–885.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.