434
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Progress in Improving Joint Strength of Brazed Cemented Carbides and Steels

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 420-437 | Received 28 Jan 2021, Accepted 09 May 2021, Published online: 25 May 2021

References

  • Armstrong R. The hardness and strength properties of WC-Co composites. Materials. 2011;4(7):1287–1308.
  • Plucknett K, Jin C, Onuoha C, Stewart T, Memarrashidi Z. The sliding wear response of high-performance cermets. In Handbook of Mechanics of Materials. Singapore: Springer; 2018. p. 1–42.
  • Brezinová J, Landová M, Guzanová A, et al. Microstructure, wear behavior and corrosion resistance of WC-FeCrAl and WC-WB-Co coatings. Metals. 2018;8(6).
  • Jianxin D, Hui Z, Ze W, et al. Friction and wear behaviors of WC/Co cemented carbide tool materials with different WC grain sizes at temperatures up to 600°C. Int J Refractory Metals Hard Mater. 2012;31:196–204.
  • Su Q, Zhu S, Ding H, et al. Comparison of the wear behaviors of advanced and conventional cemented tungsten carbides. Int J Refractory Metals Hard Mater. 2019;79:18–22.
  • Jonke M, Klünsner T, Supancic P, et al. Strength of WC-Co hard metals as a function of the effectively loaded volume. Int J Refractory Metals Hard Mater. 2017;64:219–224.
  • Liu C. Alternative binder phases for WC cemented carbides [Master's thesis]. KTH Royal Institute of Technology. 2014.
  • Tarragó J, Ferrari C, Reig B, et al. Mechanics and mechanisms of fatigue in a WC-Ni hardmetal and a comparative study with respect to WC-Co hardmetals. Int J Fatigue. 2015;70:252–257.
  • Marshall J, Giraudel M. The role of tungsten in the Co binder: effects on WC grain size and hcp-fcc Co in the binder phase. Int J Refractory Metals Hard Mater. 2015;49(1):57–66.
  • Tarraste M, Kübarsepp J, Juhani K, et al. Ferritic chromium steel as binder metal for WC cemented carbides. Int J Refractory Metals Hard Mater. 2018;73:183–191.
  • Sheikh S, M'Saoubi R, Flasar P, et al. Fracture toughness of cemented carbides: testing method and microstructural effects. Int J Refractory Metals Hard Mater. 2015;49(1):153–160.
  • Doi S, Yasuoka M. Fracture toughness KIC of cemented carbide WC-Co. WIT Trans. Engin. Sci.. 2009;64:217–226.
  • Jewell P, Shannahan L, Pagano S, et al. Rate and microstructure influence on the fracture behavior of cemented carbides WC-Co and WC-Ni. Int J Fract. 2017;208(1-2):203–219.
  • Ma B, Wang X, Chen C, et al. Dissimilar welding and joining of cemented carbides. Metals. 2019;9(11):1161.
  • Tillmann W, Sievers N. Feasibility study of fluxless brazing cemented carbides to steel. In IOP Conference Series: Materials Science and Engineering. vol. 181. IOP Publishing; 2017. p. 012007.
  • Ji H, Li M, Lu Y, et al. Mechanical properties and microstructures of hybrid ultrasonic resistance brazing of WC-Co/BeCu. J Mater Process Technol. 2012;212(9):1885–1891.
  • Laansoo A, Kübarsepp J, Vainola V, et al. Induction brazing of cermets to steel. Estonian J Engin. 2012;18(3):232.
  • Iamboliev T, Valkanov S, Atanasova S. Microstructure embrittlement of hard metal-steel joint obtained under induction heating diffusion bonding. Int J Refractory Metals Hard Mater. 2013;37:90–97.
  • Barrena M, de Salazar J, Matesanz L. Ni-Cu alloy for diffusion bonding cermet/steel in air. Mater Lett. 2009;63(24–25):2142–2145.
  • Feng K, Chen H, Xiong J, et al. Investigation on diffusion bonding of functionally graded WC-Co/Ni composite and stainless steel. Mater Des. 2013;46:622–626.
  • Xu P, Ren J, Zhang P, et al. Analysis of formation and interfacial WC dissolution behavior of WC-Co/Invar laser-TIG welded joints. J Mater Eng Perform. 2013;22(2):613–623.
  • Zhou D, Cui H, Xu P, et al. Tungsten carbide grain size computation for WC-Co dissimilar welds. J Mater Eng Perform. 2016;25(6):2500–2510.
  • Barbatti C, Garcia J, Liedl G, et al. Joining of cemented carbides to steel by laser beam welding. Und Werkstofftechnik Materwiss Werksttech. 2007;38(11):907–914.
  • Mirski Z, Granat K, Stano S. Possibilities of laser-beam joining cemented carbides to steel. Welding Int. 2016;30(3):187–191.
  • Xu P, Zhou D, Li L. Fiber laser welding of WC-Co and carbon steel dissimilar materials. Weld J. 2017;96(1):1s–10s.
  • Barrena M, De Salazar J, Gómez-Vacas M. Numerical simulation and experimental analysis of vacuum brazing for steel/cermet. Ceram Int. 2014;40(7 Part B):10557–10563.
  • Zhang J, Jin L. Numerical simulation of residual stress in brazing joint between cemented carbide and steel. Mater Sci Technol. 2005;21(12):1455–1459.
  • Cheniti B, Miroud D, Badji R, et al. Effect of brazing current on microstructure and mechanical behavior of WC-Co/AISI 1020 steel TIG brazed joint. Int J Refractory Metals Hard Mater. 2017;64:210–218.
  • Zhang X, Liu G, Tao J, et al. Brazing of WC–8Co cemented carbide to steel using Cu–Ni–Al alloys as filler metal: microstructures and joint mechanical behavior. J Mater Sci Technol. 2018;34(7):1180–1188.
  • Lee W, Kwon B, Jung S. Effects of Cr 3C 2 on the microstructure and mechanical properties of the brazed joints between WC-Co and carbon steel. Int J Refractory Metals Hard Mater. 2006;24(3):215–221.
  • Chen H, Feng K, Wei S, et al. Microstructure and properties of WC-Co/3Cr13 joints brazed using Ni electroplated interlayer. Int J Refract Metals Hard Mater. 2012;33:70–74.
  • Uzkut M, Köksal N, Ünlü B. The determination of element diffusion in connecting SAE 1040/WC material by brazing. J Mater Process Technol. 2005;169(3):409–413.
  • Jiang C, Chen H, Wang Q, et al. Effect of brazing temperature and holding time on joint properties of induction brazed WC-Co/carbon steel using Ag-based alloy. J Mater Process Technol. 2016;229:562–569.
  • Jiang C, Chen H, Zhao X, et al. Microstructure and mechanical properties of brazing bonded WC-15Co/35CrMo joint using AgNi/CuZn/AgNi composite interlayers. Int J Refractory Metals Hard Mater. 2018;70:1–8.
  • Yajiang L, Zengda Z, Xiao H, et al. A study on microstructure in the brazing interface of WC–TiC–Co hard alloys. Int J Refractory Metals Hard Mater. 2002;20(3):169–173.
  • Li Y, Zou Z, Feng T, et al. Oxidation resistance and phase constituents in the brazing interface of WC-TiC-Co hard alloys. J Mater Process Technol. 2002;122(1):51–55.
  • Hasanabadi M, Shamsipur A, Sani H, et al. Interfacial microstructure and mechanical properties of tungsten carbide brazed joints using Ag-Cu-Zn + Ni/Mn filler alloy. Trans Nonferrous Metals Soc China (English Edition). 2017;27(12):2638–2646.
  • Yaoita S, Watanabe T, Sasaki T. Effects of Ni and Co elements in filler metals in Ag-brazing of cemented carbide. Quarterly J Japan Welding Soc. 2012;30(4):298–305.
  • Yaoita S, Watanabe T, Sasaki T. Effects of Ni and Co elements in filler metals in Ag brazing of cemented carbide. Mater Res Innovat. 2013;17(sup2):s142–s147.
  • Kaiwa K, Yaoita S, Sasaki T, et al. Effects of Ni and Co additions to filler metals on Ag-brazed joints of cemented carbide and martensitic stainless steel. In Advanced Materials Research. Vol. 922. Trans Tech Publ; 2014. p. 322–327.
  • Lee W, Kwon B, Jung S. Effect of bonding time on joint properties of vacuum brazed WC – Co hard metal/carbon steel using stacked Cu and Ni alloy as insert metal. Mater Sci Technol. 2004;20(11):1474–1478.
  • Sui Y, Luo H, Lv Y, et al. Influence of brazing technology on the microstructure and properties of Yg20C cemented carbide and 16Mn steel joints. Weld World. 2016;60(6):1269–1275.
  • Zhang X, Liu G, Tao J, et al. Vacuum brazing of WC-8Co cemented carbides to carbon steel using pure Cu and Ag-28Cu as filler metal. J Mater Eng Perform. 2017;26(2):488–494.
  • Pieczara A, Piotrowski T, Leśniewski W, et al. The impact of brazing parameters on the strength of a WC/Co-filler metal-steel joint. J Mach Construct Maintenance Problemy Eksploatacji. 2015;3:59–64.
  • Cole N, Gilliland R, Slaughter G. Weldability of tungsten and its alloys. Weld J. 1971;50(9):419–426.
  • Amelzadeh M, Mirsalehi S. Influence of braze type on microstructure and mechanical behavior of WC-Co/steel dissimilar joints. J Manuf Process. 2018;36:450–458.
  • Gilliland R, Adams C. Improved brazing methods for tungsten carbide tool bits. Weld J. 1971;50(7):267.
  • Voiculescu I, Geanta V, Binchiciu H, et al. Dissimilar brazed joints between steel and tungsten carbide. In IOP Conference Series: Materials Science and Engineering. Vol. 209. IOP Publishing; 2017. p. 012021.
  • Chen H, Feng K, Xiong J, et al. Characterization and stress relaxation of the functionally graded WC–Co/Ni component/stainless steel joint. J Alloys Compd. 2013;557:18–22.
  • Chiu L, Wang H, Huang C, et al. Effect of brazing temperature on the microstructure and property of vacuum brazed WC-Co and carbon steel joint. In Advanced materials research. Vol. 47. Trans Tech Publ; 2008. p. 682–685.
  • Mousavi S, Sherafati P, Hoseinion M. Investigation on wettability and metallurgical and mechanical properties of cemented carbide and steel brazed joint. In Advanced Materials Research. Vol. 445. Trans Tech Publ. 2012. p. 759–764.
  • Xu P. Dissimilar welding of WC–Co cemented carbide to Ni42Fe50.9C0.6Mn3.5Nb3 invar alloy by laser–tungsten inert gas hybrid welding. Mater Des. 2011;32(1):229–237.
  • Peiquan X, Xiujuan Z, Dexin Y, et al. Study on filler metal (Ni-Fe-C) during GTAW of WC-30Co to 45 inch carbon steel. J Mater Sci. 2005;40(24):6559–6564.
  • Barrena M, De Salazar J, Matesanz L. Interfacial microstructure and mechanical strength of WC–Co/90MnCrV8 cold work tool steel diffusion bonded joint with Cu/Ni electroplated interlayer. Mater Des. 2010;31(7):3389–3394.
  • Tashi R, Mousavi S, Atabaki M. Diffusion brazing of Ti–6Al–4V and austenitic stainless steel using silver-based interlayer. Materials and Design (1980-2015). 2014;54:161–167.
  • Yoshida T, Ohmura H. Dissolution and deposit of base metal in dissimilar carbon steel brazing. Weld J. 1980;59(10):278–282.
  • Azcona I, Ordonez A, Sanchez J, et al. Hot isostatic pressing of ultrafine tungsten carbide-cobalt hardmetals. J Mater Sci. 2002;37(19):4189–4195.
  • Edwards R. Joint tolerances in capillary copper piping joints. Weld J. 1972;6:321–324.
  • AWS Committee on Brazing and Soldering. Brazing handbook. Miami, Florida: American Welding Society; 1991.
  • Rosen R, Kassner M. Mechanical properties of soft-interlayer solid-state welds. ASM Int ASM Handbook. 1993;6:165–172.
  • Willingham J. Filler metals and fluxes for brazing tungsten carbide. Johnson Matthey Metal Joining brochure. 2008.
  • Way M, Willingham J, Goodall R. Brazing filler metals. Int Mater Rev. 2020;65(5):257–285.
  • Kim J, Hardy J, Weil K. Silver-copper oxide based reactive air braze for joining yttria-stabilized zirconia. J Mater Res. 2005;20(3):636–643.
  • Zang L, Yuan Z, Cao Z, et al. Reactive wetting processes and triple-line configuration of Sn-3.5Ag on Cu substrates at elevated temperatures. J Electron Mater. 2012;41(8):2051–2056.
  • Chen H, Li L, Kemps R, et al. Reactive air brazing for sealing mixed ionic electronic conducting hollow fibre membranes. Acta Mater. 2015;88:74–82.
  • Yue X, He P, Feng J, et al. Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal. Mater Charact. 2008;59(12):1721–1727.
  • Li H, Peng H, Lin T, et al. Microstructure and shear strength of reactive brazing joints of TiAl/Ni-based alloy. Trans Nonferrous Metals Soc China. 2012;22(2):324–329.
  • Shiue R, Wu S, Shiue J. Infrared brazing of Ti–6Al–4V and 17-4 PH stainless steel with (Ni)/Cr barrier layer (s). Mater Sci Engin A. 2008;488(1–2):186–194.
  • Kang J, Song X, Hu S, et al. Wetting and brazing of alumina by Sn0.3Ag0.7Cu-Ti alloy. Metall Mater Trans A. 2017;48(12):5870–5878.
  • Chen Z, Bian H, Niu C, et al. Wetting and brazing of chromium film-deposited alumina using AgCu filler metal. J Mater Eng Perform. 2018;27(10):5470–5477.
  • He H, Wu C, Xie Z, et al. Effects of alloyed fluxes on spreading behavior and microstructures of aluminum–titanium TIG brazing interface. Metall Microstruct Anal. 2017;6(1):82–88.
  • Zhang Z, Xiao B, Duan D, et al. Investigation on the brazing mechanism and machining performance of diamond wire saw based on Cu-Sn-Ti alloy. Int J Refractory Metals Hard Mater. 2017;66:211–219.
  • Kozlova O, Braccini M, Voytovych R, et al. Brazing copper to alumina using reactive CuAgTi alloys. Acta Mater. 2010;58(4):1252–1260.
  • Wang H, Cao J, Feng J. Brazing mechanism and infiltration strengthening of CC composites to TiAl alloys joint. Scr Mater. 2010;63(8):859–862.
  • Zhou Y, Liu D, Niu H, et al. Vacuum brazing of C/C composite to TC4 alloy using nano-Al2O3 strengthened AgCuTi composite filler. Mater Des. 2016;93:347–356.
  • Zhao Y, Wang M, Cao J, et al. Brazing TC4 alloy to Si 3N 4 ceramic using nano-Si 3N 4 reinforced AgCu composite filler. Mater Des. 2015;76:40–46.
  • He Y, Zhang J, Lv P, et al. Characterization of the Si 3N 4/42CrMo joints vacuum brazed with Pd modified filler alloy for high temperature application. Vacuum. 2014;109:86–93.
  • Schittny S. Liquidus surface of the system Ag-Cu-Zn. MSI, Materials Science International Services GmbH, Stuttgart. 1988.
  • Silverbraze and trimetal 49Ni4 (BAg-22). tech. rep., The Prince and Izant Company. 2020.
  • Silverbraze and trimetal 50Ni2 (BAg-24). tech. rep., The Prince and Izant Company 2020.
  • Triantafyllou G, Irvine J. Wetting and interactions of Ag–Cu–Ti and Ag–Cu–Ni alloys with ceramic and steel substrates for use as sealing materials in a DCFC stack. J Mater Sci. 2016;51(4):1766–1778.
  • Pan L, Gu J, Zou W, et al. Brazing joining of Ti 3AlC 2 ceramic and 40Cr steel based on Ag-Cu-Ti filler metal. J Mater Process Technol. 2018;251:181–187.
  • Li Y, Zhu Z, He Y, et al. Wc particulate reinforced joint by ultrasonic-associated brazing of WC-Co/35CrMo. J Mater Process Technol. 2016;238:15–21.
  • Yamaguchi T, Harano K, Yajima K. Spreading and reactions of molten metals on and with cemented carbides. In Surfaces and interfaces in ceramic and ceramic–metal systems. Springer; 1981. .
  • Ray N, Froyen L, Vanmeensel K, et al. Wetting and solidification of silver alloys in the presence of tungsten carbide. Acta Mater. 2018;144:459–469.
  • Amirnasiri A, Parvin N, Haghshenas M. Dissimilar diffusion brazing of WC-Co to AISI 4145 steel using RBCuZn-D interlayer. J Manuf Process. 2017;28:82–93.
  • Li J, Sheng G, Huang L. Additional active metal Nb in Cu-Ni system filler metal for brazing of TiC cermet/steel. Mater Lett. 2015;156:10–13.
  • Laansoo A, Kübarsepp J, Vainola V. Brazing of TiC cermet to steel. In 7th International DAAAM Baltic Conference. Vol. 9. 2010. p. 1–5.
  • Laansoo A, Kübarsepp J, Vainola V, et al. Induction brazing of cermets to steel. Estonian J Engin. 2012;18(3):232–242.
  • Singh M, Asthana R. Joining of zirconium diboride-based ultra high-temperature ceramic composites using metallic glass interlayers. Mater Sci Engin A. 2007;460:153–162.
  • Singh M, Asthana R, Shpargel T. Brazing of ceramic-matrix composites to ti and hastealloy using ni-base metallic glass interlayers. Mater Sci Engin A. 2008;498(1–2):19–30.
  • Liu Y, Wang G, Cao W, et al. Brazing ZrB 2-SiC ceramics to Ti 6Al 4V alloy with TiCu-based amorphous filler. J Manuf Process. 2017;30:516–522.
  • Zou J, Jiang Z, Zhao Q, et al. Brazing of Si 3N 4 with amorphous Ti40Zr25Ni15Cu20 filler. Mater Sci Engin A. 2009;507(1–2):155–160.
  • Schijve J. Fatigue of structures and materials. Delft, The Netherlands: Springer Science & Business Media; 2001.
  • Bridges D, Zhang S, Lang S, et al. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal. Mater Lett. 2018;215:11–14.
  • Xia Y, Dong H, Zhang R, et al. Interfacial microstructure and shear strength of Ti 6Al 4V alloy/316L stainless steel joint brazed with Ti33.3Zr16.7Cu50-xNi x amorphous filler metals. Mater Des. 2020;187:108380.
  • Joseph T. Physical, static and inferred dynamic loaded properties of oil sand, final progress report, phases I, II, and III, caterpillar. Inc., Peoria, Illinois. 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.