746
Views
0
CrossRef citations to date
0
Altmetric
Review

Effect of surface oxide layers in solid-state welding of aluminium alloys – review

, , , , &
Pages 331-351 | Received 27 Jul 2022, Accepted 01 Jan 2023, Published online: 10 Jan 2023

References

  • Oliveira PHF, Amancio-Filho ST, Dos Santos JF, et al. Preliminary study on the feasibility of friction spot welding in PMMA. Mater Lett. 2010;64:2098–2101. Available from: doi:10.1016/j.matlet.2010.06.050.
  • Akinlabi ET, Mahamood RM, Akinlabi SA, et al. Processing parameters influence on wear resistance behaviour of friction stir processed Al-TiC composites. Adv. Mater. Sci. Eng. 2014;2014:1–12. doi:10.1155/2014/724590.
  • Chu Q, Yang XW, Li W, et al. Microstructure and mechanical behaviour of pinless friction stir spot welded AA2198 joints. Sci Technol Weld Join. 2016;21:164–170.
  • Labus Zlatanovic D, Balos S, Bergmann JP, et al. In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding. Int J Mach Tools Manuf. 2021;164:103716), doi:10.1016/j.ijmachtools.2021.103716.
  • Labus Zlatanovic D, Bergmann JP, Balos S, et al. Influence of rotational speed on the electrical and mechanical properties of the friction stir spot welded aluminium alloy sheets. Weld World. 2022;66:1179–1190. doi:10.1007/s40194-022-01267-8.
  • Sato YS, Takauchi H, Park SHC, et al. Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Mater Sci Eng A. 2005;405(2005):333–338. doi:10.1016/j.msea.2005.06.008.
  • Kadlec M, Ruzek R, Chatzakos P, et al. Influence of the kissing bond defect to the fatigue life in friction stir welds of AA7475-T7351. Aluminium Alloy. 2014: 1–15. https://www.researchgate.net/publication/271763178.
  • Shirzadi AA, Assadi H, Wallach ER. Interface evolution and bond strength when diffusion bonding materials with stable oxide films. Surf Interface Anal. 2001;31:609–618.
  • Wu F, Zhou W, Han Y, et al. Effect of alloying elements gradient on solid-state diffusion bonding between aerospace aluminum alloys. Materials. 2018;11:1–15. doi:10.3390/ma11081446.
  • Phillips DH. Solid-state welding processes. Weld Eng an Introd. Berlin: Springer; 2015. p. 95–113.
  • Hill A, Wallach ER. Modeling solid-state diffusion bonding. Acta Metall. 1989;37:2425–2437. doi:10.1016/0001-6160(89)90040-0.
  • Dunford DV, Partridge PG. Strength and fracture behaviour of diffusion-bonded joints in Al–Li (8090) alloy - Part II fracture behaviour. J Mater Sci. 1991;26:2625–2629. doi:10.1007/BF02387729.
  • Noonan JR, Davis HL. Atomic arrangements at metal surfaces. Science. 2016;234:310–316. doi:10.1126/science.234.4774.31.
  • Cooper DR, Allwood JM. The influence of deformation conditions in solid-state aluminium welding processes on the resulting weld strength. J Mater Process Technol. 2014;214:2576–2592. doi:10.1016/j.jmatprotec.2014.04.018.
  • Cabibbo M, Paoletti C, Ghat M, et al. Post-FSW cold-rolling simulation of ECAP shear deformation and its microstructure role combined to annealing in a FSWed AA5754 plate joint. Materials. 2019;12:1–14. doi:10.3390/ma12091526.
  • Bagheri B, Mahdian Rizi AA, Abbasi M, et al. Friction stir spot vibration welding: improving the microstructure and mechanical properties of Al5083 joint. Metallogr Microstruct Anal. 2019;8:713–725. doi:10.1007/s13632-019-00563-y.
  • Alhazaa A, Haneklaus N, Almutairi Z. Impulse pressure-assisted diffusion bonding (IPADB): review and outlook. Metals. 2021;11:1–9. doi:10.3390/met11020323.
  • Macwan A, Mirza FA, Bhole SD, et al. Similar and dissimilar ultrasonic spot welding of 5754 aluminum alloy for automotive applications. Mater Sci Forum. 2017;877:561–568. doi:10.4028/www.scientific.net/MSF.877.561.
  • Hamilton CH. Bonding of berylium members. United States Pat. Off. 1969.
  • Yamamoto M, Matsumae T, Kurashima Y, et al. Comparison of argon and oxygen plasma treatments for ambient room-temperature wafer-scale au-au bonding using ultrathin au films. Micromachines. 2019;10:119), doi:10.3390/mi10020119.
  • Mhich A. Laser cleaning prior to diffusion bonding of the Ti–6Al–4 V for aerospace applications A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Science School of Materials. University of Manchester; 2015.
  • Shen Z, Yang X, Zhang Z, et al. Mechanical properties and failure mechanisms of friction stir spot welds of AA 6061-T4 sheets. Mater Des. 2013;49:181–191. doi:10.1016/j.matdes.2013.01.066.
  • Koyama S, Takahashi M, Ikeuchi K. Behavior of superficial oxide film at solid-state diffusion-bonded interface of Tin. Mater Trans. 2004;45:300–302. doi:10.2320/matertrans.45.300.
  • Pilling J. The kinetics of isostatic diffusion bonding in superplastic materials. Mater Sci Eng. 1988;100:137–144. doi:10.1016/0025-5416(88)90249-2.
  • Wang X, Gao Y, McDonnell M, et al. On the solid-state-bonding mechanism in friction stir welding. Extrem Mech Lett. 2020;37:100727. doi:10.1016/j.eml.2020.100727.
  • Cooper DR, Allwood JM. Influence of diffusion mechanisms in aluminium solid-state welding processes. Procedia Eng. 2014;81:2147–2152. doi:10.1016/j.proeng.2014.10.300.
  • Rahaman MN. Kinetics and mechanisms of densification. Sinter Adv Mater. Sawston: Woodhead Publishing; 2010. p. 33–64.
  • Semenov AP. The phenomenon of seizure and its investigation. Wear. 1961;4:1–9. doi:10.1016/0043-1648(61)90236-8.
  • Merstallinger A, Holzbauer R, Bamsey N. Cold welding in hold down points of space mechanisms due to fretting when omitting grease. Lubricants. 2021;9:72.
  • Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548–574. doi:10.1016/j.matdes.2016.09.012.
  • Andalib H, Farahani M, Enami M. Study on the new friction stir spot weld joint reinforcement technique on 5754 aluminum alloy. Proc Inst Mech Eng Part C J Mech Eng Sci. 2018;232:2976–2986. doi:10.1177/0954406217729419.
  • Jata K, Semiatin S. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr Mater. 2000;43:743–749. doi:10.1016/S1359-6462(00)00480-2.
  • Labus Zlatanovic D, Baloš S, Bergmann JP, et al. Influence of tool geometry and process parameters on the properties of friction stir spot welded multiple (AA 5754 H111) aluminium sheets. Materials. 2021;14:1157. doi:10.3390/ma14051157.
  • Sharma C, Dwivedi DK, Kumar P. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy. Mater Des. 2012;36:379–390. doi:10.1016/j.matdes.2011.03.058.
  • Bagheri B, Abbasi M, Abdollahzadeh A, et al. Advanced approach to modify friction stir spot welding process. Met Mater Int. 2019;26:1562–1573. doi:10.1007/s12540-019-00416-x.
  • Gerlich A, Su P, Yamamoto M, et al. Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy. J Mater Sci. 2007;42:5589–5601. doi:10.1007/s10853-006-1103-7.
  • Cao JY, Wang M, Kong L, et al. Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061-T6 alloy. Mater Charact J. 2014;128:54–62. doi:10.1016/j.matchar.2017.03.023.
  • Sriraman MR, Babu SS, Short M. Bonding characteristics during very high power ultrasonic additive manufacturing of copper. Scr Mater. 2010;62:560–563. doi:10.1016/j.scriptamat.2009.12.040.
  • Mariani E, Ghassemieh E. Microstructure evolution of 6061 O Al alloy during ultrasonic consolidation: an insight from electron backscatter diffraction. Acta Mater. 2010;58:2492–2503. doi:10.1016/j.actamat.2009.12.035.
  • Gunduz IE, Ando T, Shattuck E, et al. Enhanced diffusion and phase transformations during ultrasonic welding of zinc and aluminum. Scr Mater. 2005;52:939–943. doi:10.1016/j.scriptamat.2004.12.015.
  • Panteli A, Robson JD, Brough I, et al. The effect of high strain rate deformation on intermetallic reaction during ultrasonic welding aluminium to magnesium. Mater Sci Eng A. 2012;556:31–42. doi:10.1016/j.msea.2012.06.055.
  • Ward AA, Zhang Y, Cordero ZC. Junction growth in ultrasonic spot welding and ultrasonic additive manufacturing. Acta Mater. 2018;158:393–406. Available from: doi:10.1016/j.actamat.2018.07.058.
  • Kelly GS, Advani SG, Gillespie JW, et al. A model to characterize acoustic softening during ultrasonic consolidation. J Mater Process Technol. 2013;213:1835–1845. doi:10.1016/j.jmatprotec.2013.05.008.
  • Hu J, Shimizu T, Yoshino T, et al. Evolution of acoustic softening effect on ultrasonic-assisted micro/meso- compression behavior and microstructure. Ultrasonics. 2020;107:106107), doi:10.1016/j.ultras.2020.106107.
  • Mayer M, Schwize J. Thermosonic ball bonding model based on ultrasonic friction power. 5th Electron packag technol conf (EPTC 2003); 2003; Singapore. p. 738–743.
  • Zlatanovic D L, Balos S, Bergmann JP, et al. An experimental study on lap joining of multiple sheets of aluminium alloy (AA 5754) using friction stir spot welding. Int J Adv Manuf Technol. 2020;107:3093–30107. doi:10.1007/s00170-020-05214-z.
  • Vargel C. Corrosion of aluminium. corrosion alum. Amsterdam: Elsevier; 2004.
  • Labus Zlatanovic D. Friction stir spot welding of ultrathin sheets made of aluminium – magnesium alloy PhD thesis. University of Novi Sad; 2020.
  • Polmaer I. Light alloys. Fourth edi. Amsterdam: Elsevier; 2006.
  • Rodrigues DM, Loureiro A, Leitao C, et al. Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Mater Des. 2009;30:1913–1921. doi:10.1016/j.matdes.2008.09.016.
  • Sato YS, Urata M, Kokawa H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall Mater Trans A. 2002;33A:625–635. doi:10.1007/s11661-002-0124-3.
  • Flötotto D, Wang ZM, Jeurgens LPH, et al. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces. Appl Phys Lett. 2014;104:091901), doi:10.1063/1.4867471.
  • Jeurgens LPH, Sloof WG, Tichelaar FD, et al. Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. J Appl Phys. 2002;92:1649–1656. doi:10.1063/1.1491591.
  • Jeurgens LPH, Sloof WG, Tichelaar FD, et al. Thermodynamic stability of amorphous oxide films on metals: application to aluminum oxide films on aluminum substrates. Phys Rev B. 2000;62:4707–4719. doi:10.1103/PhysRevB.62.4707.
  • Reichel F, Jeurgens LPH, Mittemeijer EJ. The thermodynamic stability of amorphous oxide overgrowths on metals. Acta Mater. 2008;56:659–674. doi:10.1016/j.actamat.2007.10.023.
  • Snijders PC, Jeurgens LPH, Sloof WG. Structure of thin aluminium-oxide ®lms determined from valence band spectra measured using XPS. Surf Sci. 2002;496:97–109. doi:10.1016/S0039-6028(01)01591-6.
  • Nguyen L, Hashimoto T, Zakharov DN, et al. Atomic-Scale insights into the oxidation of aluminum. ACS Appl Mater Interfaces. 2018;10:2230–2235. doi:10.1021/acsami.7b17224.
  • Beilby G. Aggregation and flow of solids. London: Macmillan and Co.; 1921.
  • Finch GI, Quarrell AG. The beilby layer. Nature. 1936;137:516–519. doi:10.1038/137516a0.
  • Samuels L. Metallographic polishing by mechanical methods. Cleveland (Ohio, OH): ASM; 1982.
  • Leth-Olsen H. Filiform corrosion of painted aluminium coil materials [PhD thesis. Norwegian University of Science and Technology; 1996.
  • Fishkis M, Lin JC. Formation and evolution of a subsurface layer in a metalworking process. Wear. 1997;206:156–170. doi:10.1016/S0043-1648(96)07480-7.
  • Scamans GM, Frolish MF, Rainforth WM, et al. The ubiquitous beilby layer on aluminium surfaces. Surf Interface Anal. 2010;42:175–179. doi:10.1002/sia.3204.
  • Lee KS, Kwon YN. Solid-state bonding between Al and Cu by vacuum hot pressing. Trans Nonferrous Met Soc China (English Ed. 2013;23:341–346.
  • Akca E, Gursel A. Influences of argon gas shielding on diffusion bonding of Ti–6Al–4 V alloy to aluminum. Rev Metal. 2017;53:088), doi:10.3989/revmetalm.088.
  • Özdemir N, Bilgin B. Interfacial properties of diffusion bonded Ti–6Al–4 V to AISI 304 stainless steel by inserting a Cu interlayer. Int J Adv Manuf Technol. 2009;41:519–526. doi:10.1007/s00170-008-1493-6.
  • Conrad H, Rice L. The cohesion of previously fractured Fcc metals in ultrahigh vacuum. Metall Trans. 1970;1:3019–3029. doi:10.1007/BF03038415.
  • Hosford WF, Caddell RM. Metal forming - mechanic and metallurgy. 4th Ed. Cambridge: Cambridge University Press; 2011.
  • Shirzadi A. Diffusion bonding aluminium alloys and composites: New approaches and modeling. Cambridge: Univeristy of Cambridge; 1997.
  • Urena A, de Salazar JM G, Escalera MD. Diffusion bonding of discontinuously reinforced SiC/Al matrix composites: the role of interlayers. Key Eng Mater. 1995;104–107:523–540. doi:10.4028/www.scientific.net/KEM.104-107.523.
  • Tensi HM, Wittmann M. Effects of surface finish on the solid state welding of high strength aircraft and aerospace aluminium alloys. surf Eng. 1st ed. Dordrecht: Springer; 1990. p. 260–269.
  • Zhu L, Xue X-Y, Tang B, et al. Influence of surface plastic deformation on diffusion bonding of high Nb containing TiAl alloy). 2nd annu Int conf Adv mater Eng (AME 2016). Wuhan, People’s Republic of China; 2016. p. 635–643.
  • Barta IM. Low temperature diffusion bonding of aluminium alloys. Weld J Res Suppl. 1964;43:241s–247s. doi:10.1007/s00339-013-7860-7.
  • Zeer GM, Zelenkova EG, Koroleva YP, et al. Diffusion bonding through interlayers. Weld Int. 2013;27:638–643. doi:10.1080/09507116.2012.753311.
  • Yeh MS, Chuang TH. Low-pressure diffusion bonding of sae 316 stainless steel by inserting a superplastic interlayer. Scr Metall Mater. 1995;33:1277–1281. doi:10.1016/0956-716X(95)00364-2.
  • Xie R-J, Mitomo M, Zhan G-D. Diffusion bonding of silicon nitride using a superplastic β-SiAlON interlayer. J Am Ceram Soc. 2001;84:471–473. doi:10.1111/j.1151-2916.2001.tb00683.x.
  • Ramsey KJ. Method for Diffusion Bonding Aluminium, US Patent. United States; 1990. p. 1–7.
  • Cook GO, Sorensen CD. Overview of transient liquid phase and partial transient liquid phase bonding. J Mater Sci. 2011;46:5305–5323. doi:10.1007/s10853-011-5561-1.
  • Salazar JD, Mcndez FJ, Urena A, et al. Transient liquid phase (TLP) diffusion bonding of a copper based shape memory alloy using silver as interlayer. Scr Mater. 1997;37:861–867. doi:10.1016/S1359-6462(97)00182-6.
  • Habisch S, Böhme M, Siegfried P, et al. The effect of interlayer materials on the joint and magnesium. Metals. 2018;8:1–12. doi:10.3390/met8020138.
  • Dunford D V, Partridge PG. Transient liquid phase diffusion bonding of 8090 AI–Li alloy using copper interlayer. Mater Sci Technol. 1998;14:422–428. doi:10.1179/mst.1998.14.5.422.
  • Nami H, Halvaee A, Adgi H, et al. Investigation on microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix composite using copper interlayer. J Mater Process Technol. 2010;210:1282–1289. doi:10.1016/j.jmatprotec.2010.03.015.
  • Wu F, Chen W, Zhao B, et al. Diffusion bonding of 1420 Al–Li alloy assisted by pure aluminum foil as interlayer. Materials. 2020;13:1–12. doi:10.3390/ma13051103.
  • Zhang J, Luo G, Wang Y, et al. An investigation on diffusion bonding of aluminum and magnesium using a Ni interlayer. Mater Lett. 2012;83:189–191. doi:10.1016/j.matlet.2012.06.014.
  • Assadi H, Shirzadi AA, Wallach ER. Transient liquid phase diffusion bonding under a temperature gradient: modelling of the interface morphology. Acta Mater. 2001;49:31–39. doi:10.1016/S1359-6454(00)00307-4.
  • Tashkandi MA. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1–78. doi:10.1016/j.mser.2005.07.001.
  • Hwang YM, Lin CH. Friction stir welding of dissimilar metal sheets. Steel Res Int. 2010;81:1076–1079.
  • Threadgill PL, Leonard AJ, Shercliff HR, et al. Friction stir welding of aluminium alloys. Int Mater Rev. 2009;54:49–93. doi:10.1179/174328009X411136.
  • Yadav D, Bauri R. Effect of friction stir processing on microstructure and mechanical properties of aluminium. Mater Sci Eng A. 2012;539:85–92. doi:10.1016/j.msea.2012.01.055.
  • Patel V, De Backer J, Hindsefelt H, et al. High-speed friction stir welding in light weight battery trays for the EV industry. Sci Technol Weld Join. 2022;27:250–255. doi:10.1080/13621718.2022.2045121.
  • Reisgen U, Schiebahn A, Sharma R, et al. A method for evaluating dynamic viscosity of alloys during friction stir welding. J Adv Join Process. 2020;1:100002), doi:10.1016/j.jajp.2019.100002.
  • Rayes MM E, Soliman MS, Abbas AT, et al. Effect of feed rate in FSW on the mechanical and microstructural properties of AA5754 joints. Adv Mater Sci Eng. 2019;2019:12), doi:10.1155/2019/4156176.
  • Tashkandi MA. Lap joints of 6061 Al alloys by friction stir welding. Bristol: IOP Conf Ser Mater Sci Eng. Institute of Physics Publishing; 2017.
  • Ojo OO, Taban E, Kaluc E. Friction stir spot welding of aluminum alloys: a recent review. Mater Test. 2015;57:595–627. doi:10.3139/120.110752.
  • Shahani A, Farrahi A. Effect of stirring time on the mechanical behavior of friction stir spot weld of Al 6061-T6 lap-shear configuration. Proc Inst Mech Eng Part C J Mech Eng Sci. 2019;233:3583–3591. doi:10.1177/0954406218818606.
  • Refil Friction Stir Spot Welding. [cited 2022 Feb 20]. Available from: https://www.twi-global.com/technical-knowledge/job-knowledge/refill-friction-stir-spot-welding-150.
  • Sato YS, Yamashita F, Sugiura Y, et al. FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy. Scr Mater. 2004;50:365–369. doi:10.1016/j.scriptamat.2003.10.008.
  • Duong HD, Okazaki M, Tran TH. Effect of welding parameters on mechanical properties of friction stir welded T-lap dissimilar metal joints between 7075 and 5083 aluminum alloys. Mech Eng J. 2019;6:19–91. doi:10.1299/mej.19-00091.
  • Zhou C, Yang X, Luan G. Effect of kissing bond on fatigue behavior of friction stir welds on Al 5083 alloy. J Mater Sci. 2006;41:2771–2777. doi:10.1007/s10853-006-6337-x.
  • Balos S, Sidjanin L, Dramicanin M, et al. FSW welding of Al-Mg alloy plates with increased edge roughness using square pin tools of various shoulder geometries. Mater Technol. 2016;50:387–394. doi:10.17222/mit.2015.088.
  • Badarinarayan H, Yang Q, Zhu S. Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy. Int J Mach Tools Manuf. 2009;49:142–148. doi:10.1016/j.ijmachtools.2008.09.004.
  • Badarinarayan H, Shi Y, Li X, et al. Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf. 2009;49:814–823. doi:10.1016/j.ijmachtools.2009.06.001.
  • Zhang Z, Yang X, Zhang J, et al. Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des. 2011;32:4461–4470. doi:10.1016/j.matdes.2011.03.058.
  • Yang Q, Mironov S, Sato YS, et al. Material flow during friction stir spot welding. Mater Sci Eng A. 2010;527:4389–4398. doi:10.1016/j.msea.2010.03.082.
  • Chu Q, Yang XW, Li WY, et al. Impact of surface state in probeless friction stir spot welding of an Al–Li alloy. Sci Technol Weld Join ISSN. 2019;24:200–208. doi:10.1080/13621718.2018.1517966.
  • Suryanarayanan R, Sridhar VG. Process parameter optimisation in pinless friction stir spot welding of dissimilar aluminium alloys using multi-start algorithm. Proc Inst Mech Eng Part C J Mech Eng Sci. 2020;234:4101–4115. doi:10.1177/0954406220919482.
  • Bakavos D, Chen Y, Babout L, et al. Material interactions in a novel pinless tool approach to friction stir spot welding thin aluminum sheet. Metall Mater Trans A Phys Metall Mater Sci. 2011;42:1266–1282. doi:10.1007/s11661-010-0514-x.
  • Venukumar S, Muthukumaran S, Yalagi SG, et al. Failure modes and fatigue behavior of conventional and refilled friction stir spot welds in AA 6061-T6 sheets. Int J Fatigue. 2014;61:93–100. doi:10.1016/j.ijfatigue.2013.12.009.
  • Xu Z, Li Z, Ji S, et al. Refill friction stir spot welding of 5083-O aluminum alloy. J Mater Sci Technol. 2018;34:878–885. doi:10.1016/j.jmst.2017.02.011.
  • Ji S, Li Z, Wang Y, et al. Material flow behavior of refill friction stir spot welded LY12 aluminum alloy. High Temp Mater Process. 2017;36:495–504. doi:10.1515/htmp-2015-0254.
  • Li G, Zhou L, Luo L, et al. Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy. J Mater Res Technol. 2019;8:4115–4129. doi:10.1016/j.jmrt.2019.07.021.
  • Zhang ZK, Yu Y, Zhang JF, et al. Corrosion behavior of keyhole-free friction stir spot welded joints of dissimilar 6082 aluminum alloy and DP600 galvanized steel in 3.5&per; NaCl solution. Metals. 2017;7:1–13. doi:10.3390/met7090338.
  • Uematsu Y, Tokaji K, Tozaki Y, et al. Effect of re-filling probe hole on tensile failure and fatigue behaviour of friction stir spot welded joints in Al–Mg–Si alloy. Int J Fatigue. 2008;30:1956–1966. doi:10.1016/j.ijfatigue.2008.01.006.
  • Reilly A, Shercliff H, Chen Y, et al. Modelling and visualisation of material flow in friction stir spot welding. J Mater Process Technol. 2015;225:473–484. doi:10.1016/j.jmatprotec.2015.06.021.
  • Farmanbar N, Mousavizade SM, Elsa M, et al. AA5052 sheets welded by protrusion friction stir spot welding: high mechanical performance with considering sheets thickness at low dwelling time and tool rotation speed. Proc Inst Mech Eng Part C J Mech Eng Sci. 2019;0:1–12. doi:10.1177/0954406219850202.
  • Tier MD, Rosendo TS, Dos Santos JF, et al. The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J Mater Process Technol. 2013;213:997–1005. doi:10.1016/j.jmatprotec.2012.12.009.
  • Freeney TA, Sharma SR, Mishra RS. Effect of welding parameters on properties of 5052 Al friction stir spot welds. SAE Tech Pap. 2006.
  • Bozzi S, Helbert-Etter AL, Baudin T, et al. Influence of FSSW parameters on fracture mechanisms of 5182 aluminium welds. J Mater Process Technol. 2010;210:1429–1435. doi:10.1016/j.jmatprotec.2010.03.022.
  • Mahmoud TS, Khalifa TA. Microstructural and mechanical characteristics of aluminum alloy AA5754 friction stir spot welds. J Mater Eng Perform. 2014;23:898–905. doi:10.1007/s11665-013-0828-0.
  • Hornak J, Trnka P, Kadlec P. Magnesium oxide nanoparticles: dielectric properties, surface functionalization and improvement of epoxy-based composites insulating properties. Nanomaterials. 2018;8:1–17. doi:10.3390/nano8060381.
  • Neppiras EA. Ultrasonic welding of metals. Ultrasonics. 1965;3:128–135. doi:10.1016/S0041-624X(65)80003-8.
  • Annoni M, Carboni M. Ultrasonic metal welding of AA 6022-T4 lap joints: part I – technological characterisation and static mechanical behaviour. Sci Technol Weld Join. 2011;16:107–115. doi:10.1179/1362171810Y.0000000014.
  • Carboni M, Annoni M. Ultrasonic metal welding of AA 6022-T4 lap joints: part II – fatigue behaviour, failure analysis and modelling. Sci Technol Weld Join. 2011;16:116–125. doi:10.1179/1362171810Y.0000000015.
  • Bergmann JP, Köhler T, Pöthig P. Advanced joining processes- Chapter 7- Ultrasonic welding. Amsterdam: Elsevier; 2021. p. 239–267. doi:10.1016/B978-0-12-820787-1.00007-3.
  • Ni ZL, Ye FX. Ultrasonic spot welding of aluminum alloys: a review. J Manuf Process. 2018;35:580–594. doi:10.1016/j.jmapro.2018.09.009.
  • Ni ZL, Yang JJ, Hao YX, et al. Ultrasonic spot welding of aluminum to copper: a review. Int J Adv Manuf Technol. 2020;107:585–606. doi:10.1007/s00170-020-04997-5.
  • Mohammed SMAK, Dash SS, Jiang XQ, et al. Ultrasonic spot welding of 5182 aluminum alloy: evolution of microstructure and mechanical properties. Mater Sci Eng A. 2019;756:417–429. doi:10.1016/j.msea.2019.04.059.
  • Siddiq A, Ghassemieh E. Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects. Mech Mater. 2008;40:982–1000. doi:10.1016/j.mechmat.2008.06.004.
  • Kong CY, Soar RC, Dickens PM. A model for weld strength in ultrasonically consolidated components. Proc Inst Mech Eng Part C J Mech Eng Sci. 2005;219:83–91. doi:10.1243/095440605X8315.
  • Chen KK, Zhang YS, Wang HZ. Study of plastic deformation and interface friction process for ultrasonic welding. Sci Technol Weld Join. 2017;22:208–216. doi:10.1080/13621718.2016.1218601.
  • Li H, Cao B. Effects of welding pressure on high-power ultrasonic spot welding of Cu/Al dissimilar metals. J Manuf Process. 2019;46:194–203. doi:10.1016/j.jmapro.2019.07.018.
  • Kong CY, Soar RC, Dickens PM. Characterisation of aluminium alloy 6061 for the ultrasonic consolidation process. Mater Sci Eng A. 2003;363:99–106. doi:10.1016/S0921-5093(03)00590-2.
  • Kong CY, Soar RC, Dickens PM. Optimum process parameters for ultrasonic consolidation of 3003 aluminium. J Mater Process Technol. 2004;146:181–187. doi:10.1016/j.jmatprotec.2003.10.016.
  • Watanabe T, Yanagisawa A, Konuma S, et al. Effect of oxide film on bond strength of ultrasonically welded joints, and welding process. study of ultrasonic welding of dissimilar metals (2nd report). Weld Int. 1999;13:936–944. doi:10.1080/09507119909452077.
  • Fujii HT, Endo H, Sato YS, et al. Interfacial microstructure evolution and weld formation during ultrasonic welding of Al alloy to Cu. Mater Charact. 2018;139:233–240. doi:10.1016/j.matchar.2018.03.010.
  • Matsuoka Si, Imai H. Direct welding of different metals used ultrasonic vibration. J Mater Process Technol. 2009;209:954–960. doi:10.1016/j.jmatprotec.2008.03.006.
  • Macwan A, Kumar A, Chen DL. Ultrasonic spot welded 6111-T4 aluminum alloy to galvanized high-strength low-alloy steel: microstructure and mechanical properties. Mater Des. 2017;113:284–296. doi:10.1016/j.matdes.2016.10.025.
  • Zhang G, Takahashi Y, Heng Z, et al. Ultrasonic weldability of al ribbon to cu sheet and the dissimilar joint formation mode. Mater Trans. 2015;56:1842–1851. doi:10.2320/matertrans.M2015251.
  • Gester A, Wagner G, Pöthig P, et al. Analysis of the oscillation behavior during ultrasonic welding of EN AW-1070 wire strands and EN CW004A terminals. Weld World. 2022;66:567–576. doi:10.1007/s40194-021-01222-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.