1,098
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Parametric Study of SMA-based Friction Pendulum System for Response Control of Bridges under Near-Fault Ground Motions

, ORCID Icon, &
Pages 1494-1512 | Received 09 Oct 2018, Accepted 09 Feb 2019, Published online: 12 Mar 2019

References

  • American Society of Civil Engineers (ASCE). [2005]. Minimum design loads for buildings and other structures, Standard ASCE/SEI 7-05, Reston, VA.
  • Andrawes, B. and DesRoches, R. [2007] “Comparison between shape memory alloy seismic restrainers and other bridge retrofit devices,” Journal of Bridge Engineering 12(6), 700–709. doi:10.1061/(ASCE)1084-0702(2007)12:6(700).
  • Campbell, T. I. and Kong, W. L. [1989]. Laboratory Studies of Friction in TFE Slide Surfaces of Bridge Bearings, Report ME-89-04, Ministry of Transportation and Communications, Ontario, Canada.
  • Cardone, D., Dolce, M. and Ponzo, F. C. [2006] “The behaviour of SMA isolation systems based on a full-scale release test,” Journal of Earthquake Engineering 10(6), 815–842. doi:10.1080/13632460609350619.
  • Cardone, D. and Gesualdi, G. [2017] “Influence of residual displacements on the design displacement of spherical friction-based isolation systems,” Soil Dynamics and Earthquake Engineering 100, 492–503. doi:10.1016/j.soildyn.2017.07.001.
  • Cardone, D., Gesualdi, G. and Brancato, P. [2015] “Restoring capability of friction pendulum seismic isolation systems,” Bulletin of Earthquake Engineering 13(8), 2449–2480. doi:10.1007/s10518-014-9719-5.
  • Cardone, D., Palermo, G. and Dolce, M. [2010] “Direct displacement-based design of buildings with different seismic isolation systems,” Journal of Earthquake Engineering 14(2), 163–191. doi:10.1080/13632460903086036.
  • Casciati, F. and Faravelli, L. [2009b] “A passive control device with SMA components: from the prototype to the model,” Structural Control and Health Monitoring 16(7–8), 751–765.
  • Casciati, F., Faravelli, L. and Al Saleh, R. [2009a] “An SMA passive device proposed within the highway bridge benchmark,” Structural Control and Health Monitoring 16(6), 657–667. doi:10.1002/stc.v16:6.
  • Castaldo, P. and Ripani, M. [2016] “Optimal design of friction pendulum system properties for isolated structures considering different soil conditions,” Soil Dynamics and Earthquake Engineering 90, 74–87. doi:10.1016/j.soildyn.2016.08.025.
  • Choi, E., Nam, T. H., Oh, J. T. and Cho, B. S. [2006] “An isolation bearing for highway bridges using shape memory alloys,” Materials Science and Engineering: A 438, 1081–1084. doi:10.1016/j.msea.2006.05.098.
  • Constantinou, M., Mokha, A. and Reinhorn, A. [1990] “Teflon bearings in base isolation II: modeling,” Journal of Structural Engineering 116(2), 455–474. doi:10.1061/(ASCE)0733-9445(1990)116:2(455).
  • DesRoches, R. and Smith, B. [2004] “Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations,” Journal of Earthquake Engineering 8(3), 415–429. doi:10.1080/13632460409350495.
  • Dezfuli, F. H. and Alam, M. S. [2013] “Shape memory alloy wire-based smart natural rubber bearing,” Smart Materials and Structures 22(4), 045013. doi:10.1088/0964-1726/22/4/045013.
  • Dicleli, M. and Buddaram, S. [2006] “Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges,” Earthquake Engineering & Structural Dynamics 35(2), 233–250. doi:10.1002/eqe.522.
  • Dolce, M., Cardone, D. and Croatto, F. [2005] “Frictional behavior of steel-PTFE interfaces for seismic isolation,” Bulletin of Earthquake Engineering 3(1), 75–99. doi:10.1007/s10518-005-0187-9.
  • Dong, J., Cai, C. S. and Okeil, A. M. [2010] “Overview of potential and existing applications of shape memory alloys in bridges,” Journal of Bridge Engineering 16(2), 305–315. doi:10.1061/(ASCE)BE.1943-5592.0000145.
  • Günay, M. S. and Sucuoğlu, H. [2009] “Predicting the seismic response of capacity-designed structures by equivalent linearization,” Journal of Earthquake Engineering 13(5), 623–649. doi:10.1080/13632460802632310.
  • Gur, S., Frantziskonis, G. N. and Mishra, S. K. [2017] “Thermally modulated shape memory alloy friction pendulum (tmSMA-FP) for substantial near‐fault earthquake structure protection,” Structural Control and Health Monitoring 24(11), e2021. doi:10.1002/stc.2021.
  • Jangid, R. S. [2005] “Optimum friction pendulum system for near-fault motions,” Engineering Structures 27(3), 349–359. doi:10.1016/j.engstruct.2004.09.013.
  • Jangid, R. S. [2008] “Stochastic response of bridges seismically isolated by friction pendulum system,” Journal of Bridge Engineering 13(4), 319–330. doi:10.1061/(ASCE)1084-0702(2008)13:4(319).
  • Landi, L., Grazi, G. and Diotallevi, P. P. [2016] “Comparison of different models for friction pendulum isolators in structures subjected to horizontal and vertical ground motions,” Soil Dynamics and Earthquake Engineering 81, 75–83. doi:10.1016/j.soildyn.2015.10.016.
  • Li, H., Mao, C. X. and Ou, J. P. [2008] “Experimental and theoretical study on two types of shape memory alloy devices,” Earthquake Engineering & Structural Dynamics 37(3), 407–426. doi:10.1002/eqe.761.
  • Ministry of Transport of PRC. (MTPRC). [2008] Guidelines for Seismic Design of Highway Bridges (JTG/T B02-01-2008), China Communications Press, Beijing.
  • Ministry of Transport of PRC. (MTPRC). [2013] Friction Pendulum Seismic Isolation Bearing for Highway Bridges (JT/T 852-2013), China Communications Press, Beijing.
  • Mokha, A. S., Constantinou, M. C. and Reinhorn, A. M. [1990] “Teflon bearings in base isolation I: testing,” Journal of Structural Engineering 116(2), 438–454. doi:10.1061/(ASCE)0733-9445(1990)116:2(438).
  • Otsuka, K. and Wayman, C. M. [1999] Shape Memory Materials, Cambridge University Press, Cambridge, UK.
  • Ozbulut, O. E. and Hurlebaus, S. [2011] “Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes,” Earthquake Engineering & Structural Dynamics 40(3), 273–291. doi:10.1002/eqe.1022.
  • Ozbulut, O. E. and Hurlebaus, S. [2010] “Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects,” Engineering Structures 32(1), 238–249. doi:10.1016/j.engstruct.2009.09.010.
  • Pacific Earthquake Engineering Research Center. (PEERC) [2016]. OpenSees-Version 2.5.0, Open System for Earthquake Engineering Simulation, Berkeley, http://opensees.berkeley.edu.
  • Pavese, A. and Calvi, G. M. [1998]. “Optimal design of isolated bridges and isolation systems for existing bridges,” In Proceedings of the US-Italy Workshop on Seismic Protective Systems for Bridges, NY.
  • Ryan, K. L. and Chopra, A. K. [2004] “Estimating the seismic displacement of friction pendulum isolators based on non-linear response history analysis,” Earthquake Engineering & Structural Dynamics 33(3), 359–373. doi:10.1002/eqe.355.
  • Sharabash, A. M. and Andrawes, B. O. [2009] “Application of shape memory alloy dampers in the seismic control of cable-stayed bridges,” Engineering Structures 31(2), 607–616. doi:10.1016/j.engstruct.2008.11.007.
  • Shinozuka, M., Chaudhuri, S. R. and Mishra, S. K. [2015] “Shape-memory-alloy supplemented lead rubber bearing (SMA-LRB) for seismic isolation,” Probabilistic Engineering Mechanics 41, 34–45. doi:10.1016/j.probengmech.2015.04.004.
  • Somerville, P. G., Smith, N. F., Graves, R. W. and Abrahamson, N. A. [1997] “Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity,” Seismological Research Letters 68(1), 199–222. doi:10.1785/gssrl.68.1.199.
  • Soul, H. and Yawny, A. [2017] “Applicability of superelastic materials in seismic protection systems: a parametric study of performance in isolation of structures,” Smart Materials and Structures 26(8), 085036. doi:10.1088/1361-665X/aa7caf.
  • Tena-Colunga, A. and Pérez-Osornio, M. Á. [2006] “Design displacements for base isolators considering bidirectional seismic effects,” Earthquake Spectra 22(3), 803–825. doi:10.1193/1.2216737.
  • Wilde, K., Gardoni, P. and Fujino, Y. [2000] “Base isolation system with shape memory alloy device for elevated highway bridges,” Engineering Structures 22(3), 222–229. doi:10.1016/S0141-0296(98)00097-2.
  • Wilson, J. C. and Wesolowsky, M. J. [2005] “Shape memory alloys for seismic response modification: a state-of-the-art review,” Earthquake Spectra 21(2), 569–601. doi:10.1193/1.1897384.
  • Zayas, V. A. and Low, S. S. [1999]. “Seismic isolation of bridges using friction pendulum bearings,” Structural Engineering in the 21st Century: Proc., 1999 Structures Congress, New Orleans, Louisiana.
  • Zhang, Y., Hu, X. and Zhu, S. [2009] “Seismic performance of benchmark base-isolated bridges with superelastic Cu-Al-Be restraining damping device,” Structural Control and Health Monitoring 16(6), 668–685. doi:10.1002/stc.v16:6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.