476
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Seismic Fragility of Code-conforming Italian Buildings Based on SDoF Approximation

ORCID Icon & ORCID Icon
Pages 2873-2907 | Received 30 Nov 2018, Accepted 11 Aug 2019, Published online: 16 Sep 2019

References

  • Altoontash, A. 2004. Simulation and damage models for performance assessment of reinforced concrete beam-column joints. Ph.D. thesis, Department of Civil and Environmental Engineering, Stanford University [Advisor: G. Deierlein].
  • ASCE. 2000. Prestandard and commentary for the seismic rehabilitation of buildings, Report FEMA-356, Washington, DC, USA.
  • ASCE. 2017. Minimum design loads for buildings and other structures, ASCE/SEI 7-16, American Society of Civil Engineers, Reston, VA, USA.
  • Baker, J. W. 2015. Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra 31 (1): 570–99. doi:10.1193/021113EQS025M.
  • Baltzopoulos, G., R. Baraschino, I. Iervolino, and D. Vamvatsikos. 2017. SPO2FRAG: Software for seismic fragility assessment based on static pushover. Bulletin of Earthquake Engineering 15 (10): 4399–425. doi:10.1007/s10518-017-0145-3.
  • Cattari, S., D. Camilletti, S. Lagomarsino, S. Bracchi, M. Rota, and A. Penna. 2018. Masonry Italian code-conforming buildings. part 2: Nonlinear modelling and time-history analysis. Journal of Earthquake Engineering 22 (sup2): 2010–40. doi:10.1080/13632469.2018.1541030.
  • CEN. 2004. Eurocode 8: design provisions for earthquake resistance of structures, part 1.1: General rules, seismic actions and rules for buildings, EN1998-1.
  • Christopoulos, C., R. Tremblay, H. J. Kim, and M. Lacerte. 2008. Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation. Journal of Structural Engineering 134 (1): 96–107. doi:10.1061/(ASCE)0733-9445(2008)134:1(96).
  • CNR 10025/98. 2000. Istruzioni per il progetto, l’esecuzione ed il controllo delle strutture prefabbricate in calcestruzzo (in Italian).
  • Cornell, A. C. 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America 58 (5): 1583–606.
  • Cornell, A. C., and H. Krawinkler. 2000. Progress and challenges in seismic performance assessment. Pacific Earthquake Engineering Research Center News 3:1–3. CA, USA.
  • CS.LL.PP. 2008. Norme tecniche per le costruzioni (in Italian).
  • CS.LL.PP. 2018. Aggiornamento delle norme tecniche per le costruzioni (In Italian).
  • D’ayala, D. F., D. Vamvatsikos, and K. Porter. 2014. GEM guidelines for analytical vulnerability assessment of low/mid-rise buildings, vulnerability global component project. doi:10.13117/GEM.VULN-MOD.TR2014.12.
  • De Luca, F., D. Vamvatsikos, and I. Iervolino. 2013. Near-optimal piecewise linear fits of static pushover capacity curves for equivalent SDOF analysis. Earthquake Engineering & Structural Dynamics 42 (4): 523–43. doi:10.1002/eqe.2225.
  • Fajfar, P. 2000. A nonlinear analysis method for performance-based seismic design. Earthquake Spectra 16 (3): 573–92. doi:10.1193/1.1586128.
  • FEMA. 2013. Recommended seismic design criteria for new steel moment-frame buildings: FEMA 350. Washington, DC, USA: FEMA.
  • Franchin, P., L. Ragni, M. Rota, and A. Zona. 2018. Modelling uncertainties of Italian code-conforming structures for the purpose of seismic response analysis. Journal of Earthquake Engineering 22 (sup2): 1964–89. doi:10.1080/13632469.2018.1527262.
  • HAZUS-MH. 2003. Multi-hazard loss estimation methodology: Earthquake model – Technical manual. Accessed November 2018. https://www.fema.gov/hazus
  • Hsiao, P., D. E. Lehman, and C. W. Roeder. 2013. Evaluation of the response modification coefficient and collapse potential of special concentrically braced frames. Earthquake Engineering & Structural Dynamics 42 (10): 1547–64. doi:10.1002/eqe.2286.
  • Ibarra, L. F., and H. Krawinkler. 2005. Global collapse of frame structures under seismic excitations. CA, USA: John A. Blume Earthquake Engineering Center, Stanford University.
  • Ibarra, L. F., R. A. Medina, and H. Krawinkler. 2005. Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics 34 (12): 1489–511. doi:10.1002/eqe.495.
  • Iervolino, I. 2017. Assessing uncertainty in estimation of seismic response for PBEE. Earthquake Engineering & Structural Dynamics 46 (10): 1711–23. doi:10.1002/eqe.2883.
  • Iervolino, I., A. Spillatura, and P. Bazzurro. 2018. Seismic reliability of code-conforming Italian buildings. Journal of Earthquake Engineering 22 (sup2): 5–27. doi:10.1080/13632469.2018.1540372.
  • Jalayer, F., and A. C. Cornell. 2003. A technical framework for probability-based demand and capacity factor design (DCFD) seismic formats, PEER Report 2003/08, CA, USA.
  • Jalayer, F., H. Ebrahimian, A. Miano, G. Manfredi, and H. Sezen. 2017. Analytical fragility assessment using unscaled ground motion records. Earthquake Engineering & Structural Dynamics 46 (15): 2639–63. doi:10.1002/eqe.2922.
  • Kohrangi, M., D. Vamvatsikos, and P. Bazzurro. 2017. Site dependence and record selection schemes for building fragility and regional loss assessment. Earthquake Engineering & Structural Dynamics 46 (10): 1625–43. doi:10.1002/eqe.2873.
  • Kosič, M., P. Fajfar, and M. Dolšek. 2014. Approximate seismic risk assessment of building structures with explicit consideration of uncertainties. Earthquake Engineering & Structural Dynamics 43 (10): 1483–502. doi:10.1002/eqe.2407.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2013. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures 56:1787–99. doi:10.1016/j.engstruct.2013.08.002.
  • Lin, T., C. B. Haselton, and J. W. Baker. 2013. Conditional spectrum-based ground motion selection. Part I: Hazard consistency for risk-based assessments. Earthquake Engineering & Structural Dynamics 42 (12): 1847–65. doi:10.1002/eqe.2301.
  • Luco, N., and P. Bazzurro. 2007. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses? Earthquake Engineering & Structural Dynamics 36 (13): 1813–35. doi:10.1002/eqe.695.
  • Magliulo, G., D. Bellotti, M. Cimmino, and R. Nascimbene. 2018. Modeling and seismic response analysis of RC precast Italian code-conforming buildings. Journal of Earthquake Engineering 22 (sup2): 140–67. doi:10.1080/13632469.2018.1531093.
  • Manzini, C. F., G. Magenes, A. Penna, F. Da Porto, D. Camilletti, S. Cattari, and S. Lagomarsino. 2018. Masonry Italian code-conforming buildings. Part 1: Case studies and design methods. Journal of Earthquake Engineering 22 (sup2): 54–73. doi:10.1080/13632469.2018.1532358.
  • McKenna, F., G. L. Fenves, M. H. Scott, and B. Jeremic. 2000. Open system for earthquake engineering simulation (OpenSees). Berkeley, CA, USA: Pacific Earthquake Engineering Research Center, University of California. Accessed November 2018. http://opensees.berkeley.edu/
  • O’Reilly, G. J., and T. J. Sullivan. 2018. Quantification of modelling uncertainty in existing Italian RC frames. Earthquake Engineering & Structural Dynamics 47 (4): 1054–74. doi:10.1002/eqe.3005.
  • Pitilakis, K., H. Crowley, and A. M. Kaynia. 2014. SYNER-G: Typology definition and fragility functions for physical elements at seismic risk. Vol. 27. Dordrecht, Netherlands: Springer. doi:10.1007/978-94-007-7872-6.
  • Ricci, P., V. Manfredi, F. Noto, M. Terrenzi, C. Petrone, F. Celano, M.T. De Risi, G. Camata, P. Franchin, G. Magliulo, et al. 2018. Modeling and seismic response analysis of Italian code-conforming reinforced concrete buildings. Journal of Earthquake Engineering 22 (sup2): 105–39. doi:10.1080/13632469.2018.1527733.
  • RINTC-Workgroup. 2018. Results of the 2015–2017 implicit seismic risk of code- conforming structures in Italy (RINTC) project. ReLUIS Report, Rete Dei Laboratori Universitari Di Ingegneria Sismica (ReLUIS), Naples, Italy.
  • Rota, M., A. Penna, and G. Magenes. 2010. A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses. Engineering Structures 32 (5): 1312–23. doi:10.1016/j.engstruct.2010.01.009.
  • Scozzese, F., G. Terracciano, A. Zona, C. G. Della, A. Dall’Asta, and R. Landolfo. 2018. Modeling and seismic response analysis of Italian code-conforming single-storey steel buildings. Journal of Earthquake Engineering 22 (sup2): 2104–33. doi:10.1080/13632469.2018.1528913.
  • Shome, N., and A. C. Cornell. 2000. Structural seismic demand analysis: Consideration of ‘collapse’. In Proc. 8th ASCE Spec. Conf. Probabilistic mech. Struct. Reliab. South Bend, IN: American Society of Civil Engineers (ASCE).
  • Silva, V., S. Akkar, J. Baker, P. Bazzurro, J. M. Castro, H. Crowley, M. Dolsek, C. Galasso, S. Lagomarsino, R. Monteiro, et al. 2019. Current challenges and future trends in analytical fragility and vulnerability modelling. Earthquake Spectra in press. doi:10.1193/042418EQS101O.
  • Suzuki, A., G. Baltzopoulos, and I. Iervolino; RINTC-Workgroup. 2018. A look at the seismic risk of Italian code-conforming RC buildings. In Proc. 16th Eur. Conf. Earthq. Eng., 18–21. Thessaloniki, Greece.
  • Suzuki, A. 2019. Seismic fragility assessment of code-conforming buildings in Italy, Ph.D. thesis, Dipartimento di Strutture per l’Ingegneria e l’Architettura, Università degli Studi di Napoli Federico II. [Advisor: I. Iervolino].
  • Tremblay, R., M. Lacerte, and C. Christopoulos. 2008. Seismic response of multistory buildings with self-centering energy dissipative steel braces. Journal of Structural Engineering 134 (1): 108–20. doi:10.1061/ASCE0733-94452008134:1108.
  • Vamvatsikos, D., and A. C. Cornell. 2006. Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Journal of Earthquake Engineering and Structural Dynamics 35 (9): 1097–117. doi:10.1002/eqe.573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.