378
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Seismic response analysis of face slabs in concrete face rockfill dams

, &
Pages 192-220 | Received 04 Oct 2018, Accepted 09 Sep 2019, Published online: 28 Oct 2019

References

  • Arici, Y. 2011. Investigation of the cracking of CFRD face plates. Computers and Geotechnics 38: 905–16. doi:10.1016/j.compgeo.2011.06.004.
  • Bayraktar, A., A. A. Dumanoglu, and Y. Calayir. 1996. Asynchronous dynamic analysis of dam-reservoir-foundation systems by the Lagrangian approach. Computers & Structures 58: 925–35. doi:10.1016/0045-7949(95)00211-X.
  • Bayraktar, A., K. Haciefendioglu, and M. Muvafik. 2005. Asynchronous seismic analysis of concrete-faced rockfill dams including dam-reservoir interaction. Canadian Journal of Civil Engineering 32: 940–47. doi:10.1139/l05-055.
  • Bayraktar, A., and M. E. Kartal. 2010. Linear and nonlinear response of concrete slab on CFR dam during earthquake. Soil Dynamics and Earthquake Engineering 30: 990–1003. doi:10.1016/j.soildyn.2010.04.010.
  • Bayraktar, A., M. E. Kartal, and S. Adanur. 2011. The effect of concrete slabrockfill interface behavior on the earthquake performance of a CFR dam. International Journal of Non-linear Mechanics 46: 35–46. doi:10.1016/j.ijnonlinmec.2010.07.001.
  • Been, K., and M. G. Jefferies. 1985. A state parameter for sands. Géotechnique 35: 99–112. doi:10.1680/geot.1985.35.2.99.
  • Bouzaiène, H., C. Chartrand, and Y. Hammamji. 2006. Analysis of the behaviour of the Toulnoustouc CFRD dam. Canadian Dam Association (CDA) 2006 Annual Conference, Québec, Quebec city, Canada, 1–8.
  • Chen, S., and H. Han. 2009. Impact of the ‘5.12ʹ Wenchuan earthquake on Zipingpu concrete face rock-fill dam and its analysis. Geomechanics and Geoengineering 4: 299–306. doi:10.1080/17486020903215940.
  • Chen, W. F., and G. Y. Baladi. 1985. Soil plasticity: Theory and implementation. New York, NY: Elsevier.
  • Chen, Y., R. Hu, W. Lu, D. Li, and C. Zhou. 2011. Modeling coupled processes of non-steady seepage flow and non-linear deformation for a concrete-faced rockfill dam. Computers & Structures 89: 1333–51. doi:10.1016/j.compstruc.2011.03.012.
  • Clough, G. W., and J. M. Duncan. 1971. Finite element analyses of retaining wall behavior. Journal of the Soil Mechanics and Foundations Division 97: 1657–73.
  • Cruz, P. T., B. Materón, and M. Freitas. 2010. Concrete face rockfill dams. UK: Taylor & Francis.
  • Dafalias, Y. F. 1986. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of Engineering Mechanics 112: 966–87. doi:10.1061/(ASCE)0733-9399(1986)112:9(966).
  • Dafalias, Y. F., and E. P. Popov. 1975. A model of nonlinearly hardening materials for complex loading. Acta Mechanica 21: 173–92. doi:10.1007/BF01181053.
  • Dafalias, Y. F., and M. T. Manzari. 2004. Simple plasticity sand model accounting for fabric change effects. Journal of Engineering Mechanics 130: 622–34. doi:10.1061/(ASCE)0733-9399(2004)130:6(622).
  • Dakoulas, P. 2012a. Longitudinal vibrations of tall concrete faced rockfill dams in narrow canyons. Soil Dynamics and Earthquake Engineering 41: 44–58. doi:10.1016/j.soildyn.2012.05.010.
  • Dakoulas, P. 2012b. nonlinear seismic response of tall concrete-faced rockfill dams in narrow canyons. Soil Dynamics and Earthquake Engineering 34: 11–24. doi:10.1016/j.soildyn.2012.09.007.
  • Daouadji, A., P.-Y. Hicher, and A. Rahma. 2001. An elastoplastic model for granular materials taking into account grain breakage. European Journal of Mechanics - A/Solids 20: 113–37. doi:10.1016/S0997-7538(00)01130-X.
  • Dassault Systèmes. 2013. Abaqus documentation. Providence, RI: Dassault Systèmes Simulia Corp.
  • Dejong, J. T., D. J. White, and M. F. Randolph. 2006. Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry. Soils and Foundations 46: 15–28. doi:10.3208/sandf.46.15.
  • DeJong, J. T., and Z. J. Westgate. 2009. Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior. Journal of Geotechnical and Geoenvironmental Engineering 135: 1646–60. doi:10.1061/(ASCE)1090-0241(2009)135:11(1646).
  • Desai, C. S., J. G. Lightner, and H. J. Siriwardane. 1984. Thin-layer element for interfaces and joints. International Journal for Numerical and Analytical Methods in Geomechanics 8: 19–43. doi:10.1002/nag.1610080103.
  • DiMaggio, F. L., and I. S. Sandler. 1971. Material model for granular soils. Journal of the Engineering Mechanics Division 97: 935–50.
  • Drucker, D. C., R. E. Gibson, and D. J. Henkel. 1957. Soil mechanics and work-hardening theories of plasticity. Transactions of the American Society of Civil Engineers 122: 338–46.
  • Esfahani Kan, M., and H. Taiebat. 2016. Application of an advanced bounding surface plasticity model in static and seismic analyses of Zipingpu Dam. Canadian Geotechnical Journal 53: 455–71. doi:10.1139/cgj-2015-0120.
  • Evgin, E., and K. Fakharian. 1996. Effect of stress paths on the behaviour of sand-steel interfaces. Canadian Geotechnical Journal 33: 853–65. doi:10.1139/t96-116-336.
  • Fakharian, K. 1996. Three-dimensional monotonic and cyclic behaviour of sand-steel interfaces: Testing and modelling. Ph.D. thesis, University fo Ottowa, Ontario, Canada
  • Frost, J., J. DeJong, and M. Recalde. 2002. Shear failure behavior of granular–Continuum interfaces. Engineering Fracture Mechanics 69: 2029–48. doi:10.1016/S0013-7944(02)00075-9.
  • Gazetas, G., and P. Dakoulas. 1992. Seismic analysis and design of rockfill dams: State-of-the-art. Soil Dynamics and Earthquake Engineering 11: 27–61. doi:10.1016/0267-7261(92)90024-8.
  • Ghafghazi, M., D. A. Shuttle, and J. T. DeJong. 2014. Particle breakage and the critical state of sand. Soils and Foundations 54: 451–61. doi:10.1016/j.sandf.2014.04.016.
  • Helwany, S. 2007. Applied soil mechanics : With ABAQUS applications. Hoboken, NJ: John Wiley & Sons.
  • Hu, L., and J. Pu. 2004. Testing and modeling of soil-structure interface. Journal of Geotechnical and Geoenvironmental Engineering 130: 851–60. doi:10.1061/(ASCE)1090-0241(2004)130:8(851).
  • Hu, W., Z. Yin, C. Dano, and P.-Y. Hicher. 2011. A constitutive model for granular materials considering grain breakage. Science China Technological Sciences 54: 2188–96. doi:10.1007/s11431-011-4491-0.
  • Hydro-Quebec. 2006. Rapport de conception-Aménagement Hydroélectrique de la Toulnustouc. Montréal, QC: Hydro-Québec.
  • Justo, J. L., F. Segovia, and A. Jaramillo. 1995. Three-dimensional joint elements applied to concrete-faced dams. International Journal for Numerical and Analytical Methods in Geomechanics 19: 615–36. doi:10.1002/(ISSN)1096-9853.
  • Kartal, M. E., A. Bayraktar, and H. B. Bas. 2010. Seismic failure probability of concrete slab on CFR dams with welded and friction contacts by response surface method. Soil Dynamics and Earthquake Engineering 30: 1383–99. doi:10.1016/j.soildyn.2010.06.013.
  • Kartal, M. E., A. Bayraktar, and H. B. Basaga. 2012. Nonlinear finite element reliability analysis of Concrete-Faced Rockfill (CFR) dams under static effects. Applied Mathematical Modelling 36: 5229–48. doi:10.1016/j.apm.2011.12.004.
  • Khalid, B. S., B. Singh, G. C. Nayak, and O. P. Jain. 1990. nonlinear analysis of concrete face rockfill dam. Journal of Geotechnical Engineering 116: 822–37. doi:10.1061/(ASCE)0733-9410(1990)116:5(822).
  • Khoei, A. R., A. R. Azami, and S. M. Haeri. 2004. Implementation of plasticity based models in dynamic analysis of earth and rockfill dams: A comparison of Pastor-Zienkiewicz and cap models. Computers and Geotechnics 31: 384–409. doi:10.1016/j.compgeo.2004.04.003.
  • Kong, X., and J. Liu. 2002. Dynamic failure numeric simulations of model concrete-faced rock-fill dam. Soil Dynamics and Earthquake Engineering 22: 1131–34. doi:10.1016/S0267-7261(02)00139-2.
  • Kong, X. J., J. M. Liu, and D. G. Zou. 2016. Numerical simulation of the separation between concrete face slabs and cushion layer of Zipingpu dam during the Wenchuan earthquake. Science China Technological Sciences 59: 531–39. doi:10.1007/s11431-015-5953-6.
  • Koval, G., F. Chevoir, J. N. Roux, J. Sulem, and A. Corfdir. 2011. Interface roughness effect on slow cyclic annular shear of granular materials. Granular Matter 13: 525–40. doi:10.1007/s10035-011-0267-2.
  • Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. Significance of particle crushing in granular materials. Journal of Geotechnical Engineering 122: 309–16. doi:10.1061/(ASCE)1090-0241(1997)123:9(889).
  • Lashkari, A. 2012. A plasticity model for sand-structure interfaces. Journal of Central South University 19: 1098–108. doi:10.1007/s11771-012-1115-1.
  • Lashkari, A. 2013. Prediction of the shaft resistance of nondisplacement piles in sand. International Journal for Numerical and Analytical Methods in Geomechanics 37: 904–31. doi:10.1002/nag.
  • Liu, H., and D. Zou. 2013. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage. Journal of Engineering Mechanics 139: 606–15. ©. doi:10.1061/(ASCE)EM.1943-7889.0000513.
  • Liu, H., E. Song, and H. I. Ling. 2006. Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics. Mechanics Research Communications 33: 515–31. doi:10.1016/j.mechrescom.2006.01.002.
  • Liu, H., and H. I. Ling. 2008. Constitutive description of interface behavior including cyclic loading and particle breakage within the framework of critical state soil mechanics. International Journal for Numerical and Analytical Methods in Geomechanics 32: 1495–514. doi:10.1002/nag.682.
  • Liu, J., D. Zou, and X. Kong. 2014. A three-dimensional state-dependent model of soil-structure interface for monotonic and cyclic loadings. Computers and Geotechnics 61: 166–77. doi:10.1016/j.compgeo.2014.05.012.
  • Loupasakis, C. J., B. G. Christaras, G. C. Dimopoulos, and T. N. Hatzigogos. 2009. Evaluation of plasticity models’ ability to analyze typical earth dams’ soil materials. Geotechnical and Geological Engineering 27: 71–80. doi:10.1007/s10706-008-9212-5.
  • Marachi, N. D., C. K. Chan, and S. H. bolton. 1972. Evaluation of properties of rockfill materials. Journal of the Soil Mechanics and Foundations Division 98: 95–114.
  • Marsal, R. J. 1967. Large-scale testing of rockfill materials. Journal of the Soil Mechanics and Foundations Division 93: 27–43.
  • Modares, M., and J. E. Quiroz. 2016. Structural analysis framework for concrete-faced rockfill dams. International Journal of Geomechanics 16: 1–14. doi:10.1061/(ASCE)GM.1943-5622.0000478.
  • Mortara, G., A. Mangiola, and V. N. Ghionna. 2007. Cyclic shear stress degradation and post-cyclic behaviour from sand–Steel interface direct shear tests. Canadian Geotechnical Journal 44: 739–52. doi:10.1139/t07-019.
  • Mortara, G., D. Ferrara, and G. Fotia. 2010. Simple model for the cyclic behavior of smooth sand-steel interfaces. Journal of Geotechnical and Geoenvironmental Engineering 136: 1004–09. doi:10.1061/(ASCE)GT.1943-5606.0000315.
  • Papadimitriou, A. G., and G. D. Bouckovalas. 2002. Plasticity model for sand under small and large cyclic strains: A multiaxial formulation. Soil Dynamics and Earthquake Engineering 22: 191–204. doi:10.1016/S0267-7261(02)00009-X.
  • Pichler, B., C. Hellmich, H. A. Mang, and J. Eberhardsteiner. 2006. Loading of a gravel-buried steel pipe subjected to rockfall. Journal of Geotechnical and Geoenvironmental Engineering 132: 1465–73. doi:10.1061/(ASCE)1090-0241(2006)132:11(1465).
  • Qu, Y., D. Zou, X. Kong, and B. Xu. 2017. A novel interface element with asymmetric nodes and its application on concrete-faced rockfill dam. Computers and Geotechnics 85: 103–16. doi:10.1016/j.compgeo.2016.12.013.
  • Qu, Y., D. Zou, X. Kong, J. Liu, Y. Zhang, and X. Yu. 2019. Seismic damage performance of the steel fiber reinforced face slab in the concrete-faced rockfill dam. Soil Dynamics and Earthquake Engineering 119: 320–30. doi:10.1016/j.soildyn.2019.01.018.
  • Saberi, M., C. D. Annan, and J. M. Konrad. 2013. Numerical modeling tools for the analysis of concrete-faced rockfill dams under dynamic earthquake loading. Proceedings, Annual Conference - Canadian Society for Civil Engineering 2: 1849–58.
  • Saberi, M., C.-D. Annan, and J.-M. Konrad. 2017. Constitutive modeling of gravelly soil-structure interface considering particle breakage. Journal of Engineering Mechanics 143 (8): 14. doi:10.1061/(ASCE)EM.1943-7889.0001246.
  • Saberi, M., C.-D. Annan, and J.-M. Konrad. 2018a. On the mechanics and modeling of interfaces between granular soils and structural materials. Archives of Civil and Mechanical Engineering 18: 1562–79. doi:10.1016/j.acme.2018.06.003.
  • Saberi, M., C.-D. Annan, and J.-M. Konrad. 2018b. Numerical analysis of concrete faced rockfill dams considering the effect of face slab-cushion layer interaction. Canadian Geotechnical Journal 55: 1489–501. doi:10.1139/cgj-2017-0609.
  • Saberi, M., C.-D. Annan, and J.-M. Konrad. 2018c. A unified constitutive model for simulating stress-path dependency of sandy and gravelly soil-structure interfaces. International Journal of Non-linear Mechanics 102: 1–13. doi:10.1016/j.ijnonlinmec.2018.03.001.
  • Saberi, M., C.-D. Annan, and J.-M. Konrad. 2019. Implementation of a soil-structure interface constitutive model for application in geo-structures. Soil Dynamics and Earthquake Engineering 116: 714–731. doi:10.1016/j.soildyn.2018.11.001.
  • Saberi, M., C.-D. Annan, J.-M. Konrad, and A. Lashkari. 2016. A critical state two-surface plasticity model for gravelly soil-structure interfaces under monotonic and cyclic loading. Computers and Geotechnics 80: 71–82. doi:10.1016/j.compgeo.2016.06.011.
  • Saberi, M., F. Behnamfar, and M. Vafaeian. 2015. A continuum shell-beam finite element modeling of buried pipes with 90-degree elbow subjected to earthquake excitations. International Journal of Engineering -transactions C: Aspects 28: 338–49. doi:10.5829/idosi.ije.2015.28.03c.02.
  • Sandler, I. S., and M.L. Baron. 1979. Recent developments in the constitutive modeling of geological materials. In Proceedings of the 3rd International Conference on Numerical Methods in Geomechanics, Aachen, Germany, 2–6 April 1979, Balkema, ed. W. Wittke, 363–376. Rotterdam: A.A. Balkema.
  • Seiphoori, A., S. M. Haeri, and M. Karimi. 2011. Three-dimensional nonlinear seismic analysis of concrete faced rockfill dams subjected to scattered P, SV, and SH waves considering the dam–Foundation interaction effects. Soil Dynamics and Earthquake Engineering 31: 792–804. doi:10.1016/j.soildyn.2011.01.003.
  • Seo, M.-W., I. S. Ha, Y.-S. Kim, and S. M. Olson. 2009. Behavior of concrete-faced rockfill dams during initial impoundment. Journal of Geotechnical and Geoenvironmental Engineering 135: 1070–81. doi:10.1061/(ASCE)GT.1943-5606.0000021.
  • Shahrour, I., and F. Rezaie. 1997. An elastoplastic constitutive relation for the soil-structure interface under cyclic loading. Computers and Geotechnics 21: 21–39. doi:10.1016/S0266-352X(97)00001-3.
  • Sherard, J. L., and J. Barry Cooke. 1987. Concrete-face rockfill dam: I. Assessment. Journal of Geotechnical Engineering 113: 1096–112. doi:10.1061/(ASCE)0733-9410(1987)113:10(1096).
  • Taiebat, M., and Y. F. Dafalias. 2008. SANISAND: Simple anisotropic sand plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics 32: 915–48. doi:10.1002/nag.651.
  • Uddin, N. 1999. A dynamic analysis procedure for concrete-faced rockill dams subjected to strong seismic excitation. Computers & Structures 72: 409–21. doi:10.1016/S0045-7949(99)00011-5.
  • Uddin, N., and G. Gazetas. 1995. Dynamic response of concrete-faced rockfill dams to strong seismic excitation. Journal of Geotechnical Engineering 121: 185–97. doi:10.1061/(ASCE)0733-9410(1995)121:2(185).
  • Uesugi, M., H. Kishida, and Y. Tsubakihara. 1988. Behavior of sand particles in sand-steel friction. Soils and Foundations 28: 107–18. doi:10.3208/sandf1972.28.107.
  • Uesugi, M., H. Kishida, and Y. Tsubakihara. 1989. Friction between sand and steel under repeated loading. Soils and Foundations 29: 127–37. doi:10.3208/sandf.47.887.
  • Uesugi, M., H. Kishida, and Y. Uchikawa. 1990. Friction between dry sand and concrete under monotonic and repeated loading. Soils and Foundations 30: 115–28. doi:10.3208/sandf1972.30.115.
  • Wen, L., J. Chai, Z. Xu, Y. Qin, and Y. Li. 2017. Monitoring and numerical analysis of behaviour of Miaojiaba concrete-face rockfill dam built on river gravel foundation in China. Computers and Geotechnics 85: 230–48. doi:10.1016/j.compgeo.2016.12.018.
  • Xianjing, K., Z. Yang, Z. Degao, B. Xu, and L. Yu. 2011. Numerical analysis of dislocations of the face slabs of the Zipingpu concrete faced rockfill dam during the Wenchuan earthquake. Earthquake Engineering and Engineering Vibration 10: 581–89. doi:10.1007/s11803-011-0091-z.
  • Xu, B., D. Zou, and H. Liu. 2012. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model. Computers and Geotechnics 43: 143–54. doi:10.1016/j.compgeo.2012.03.002.
  • Xu, B., D. Zou, X. Kong, Y. Zhou, and X. Liu. 2017. Concrete slab dynamic damage analysis of CFRD based on concrete nonuniformity. International Journal of Geomechanics 17: 04017055. doi:10.1061/(asce)gm.1943-5622.0000939.
  • Xu, B., D. Zou, X. Kong, Z. Hu, and Y. Zhou. 2015. Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model. Computers and Geotechnics 65: 258–65. doi:10.1016/j.compgeo.2015.01.003.
  • Zeghal, M., and T. B. Edil. 2002. Soil structure interaction analysis: Modeling the interface. Canadian Geotechnical Journal 39: 620–28. doi:10.1139/t02-016.
  • Zhang, B., J. G. Wang, and R. Shi. 2004. Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer. Computers and Geotechnics 31: 559–73. doi:10.1016/j.compgeo.2004.07.004.
  • Zhang, G., and J.-M. Zhang. 2006. Monotonic and cyclic tests of interface between structure and gravelly soil. Soils and Foundations 46: 505–18. doi:10.3208/sandf.46.505.
  • Zhang, G., and J.-M. Zhang. 2008. Unified modeling of monotonic and cyclic behavior of interface between structure and gravelly soil. Soils and Foundations 48: 231–45. doi:10.3208/sandf.48.231.
  • Zhang, G., and J.-M. Zhang. 2009a. Constitutive rules of cyclic behavior of interface between structure and gravelly soil. Mechanics of Materials 41: 48–59. doi:10.1016/j.mechmat.2008.08.003.
  • Zhang, G., and J.-M. Zhang. 2009b. Numerical modeling of soil–Structure interface of a concrete-faced rockfill dam. Computers and Geotechnics 36: 762–72. doi:10.1016/j.compgeo.2009.01.002.
  • Zhou, M., Z. Bingyin, P. Chong, and W. Wu. 2016b. Three-dimensional numerical analysis of concrete-faced rockfill dam using dual-mortar finite element method with mixed tangential contact constraints. International Journal for Numerical and Analytical Methods in Geomechanics 40: 2100–22. doi:10.1002/nag.2524.
  • Zhou, M.-Z., B. Zhang, and Y. Jie. 2016a. Numerical simulation of soft longitudinal joints in concrete-faced rockfill dam. Soils Found 56: 379–90. doi:10.1016/j.sandf.2016.04.005.
  • Zienkiewicz, O. C., B. Best, C. Dullage, and K. G. Stagg (1970) Analysis of nonlinear problems in rock mechanics with particular reference to jointed rock systems. 2nd International Society of Rock Mechanics, Proceedings, Belgrad, 501–09.
  • Zou, D., B. Xu, X. Kong, H. Liu, and Y. Zhou. 2013. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model. Computers and Geotechnics 49: 111–22. doi:10.1016/j.compgeo.2012.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.