496
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Shaking Table Tests of a Reinforced Concrete Frame Subjected to Mainshock-Aftershock Sequences

ORCID Icon, &
Pages 1693-1722 | Received 28 Jul 2019, Accepted 18 Feb 2020, Published online: 13 Mar 2020

References

  • Abdelnaby, A. E. 2018. Fragility curves for RC frames subjected to tohoku mainshock-aftershocks sequences. Journal of Earthquake Engineering 22 (5): 902–20. doi: 10.1080/13632469.2016.1264328.
  • Abdollahzadeh, G., A. Mohammadgholipour, and E. Omranian. 2018a. Seismic evaluation of steel moment frames under mainshock-aftershock sequence designed by elastic design and PBPD methods. Journal of Earthquake Engineering. doi: 10.1080/13632469.2017.1387198.
  • Abdollahzadeh, G., E. Omranian, and V. Vahedian. 2018b. Application of the artificial neural network for predicting mainshock-aftershock sequences in seismic assessment of reinforced concrete structures. Journal of Earthquake Engineering 1–27. doi: 10.1080/13632469.2018.1512062.
  • Amadio, C., M. Fragiacomo, and S. Rajgelj. 2003. The effects of repeated earthquake ground motions on the non-linear response of SDOF systems. Earthquake Engineering & Structural Dynamics 32 (2): 291–308. doi: 10.1002/()1096-9845.
  • Aschheim, M., and E. Black. 1999. Effects of prior earthquake damage on response of simple stiffness-degrading structures. Earthquake Spectra 15 (1): 1–24. doi: 10.1193/1.1586026.
  • Bannister, S., B. Fry, M. Reyners, J. Ristau, and H. Zhang. 2011. Fine-scale relocation of aftershocks of the 22 February Mw 6.2 Christchurch earthquake using double-difference tomography. Seismological Research Letters 82 (6): 839–45. doi: 10.1785/gssrl.82.6.839.
  • Benavent-Climent, A. 2005. Shaking table tests of reinforced concrete wide beam–column connections. Earthquake Engineering & Structural Dynamics 34 (15): 1833–39. doi: 10.1002/()1096-9845.
  • Benavent-Climent, A., A. Ramírez-Márquez, and S. Pujol. 2018a. Seismic strengthening of low-rise reinforced concrete frame structures with masonry infill walls: Shaking-table test. Engineering Structures 165: 142–51. doi: 10.1016/j.engstruct.2018.03.026.
  • Benavent-Climent, A., D. Escolano-Margarit, and L. Morillas. 2014a. Shake-table tests of a reinforced concrete frame designed following modern codes: Seismic performance and damage evaluation. Earthquake Engineering & Structural Dynamics 43 (6): 791–810. doi: 10.1002/eqe.v43.6.
  • Benavent-Climent, A., D. Galé-Lamuela, and J. Donaire-Avila. 2019. Energy capacity and seismic performance of RC waffle-flat plate structures under two components of far-field ground motions: Shake table tests. Earthquake Engineering & Structural Dynamics. doi: 10.1002/eqe.3161.
  • Benavent-Climent, A., J. Donaire-Avila, and E. Oliver-Saiz. 2016. Shaking table tests of a reinforced concrete waffle–flat plate structure designed following modern codes: Seismic performance and damage evaluation. Earthquake Engineering & Structural Dynamics 45 (2): 315–36. doi: 10.1002/eqe.2666.
  • Benavent-Climent, A., J. Donaire-Avila, and E. Oliver-Sáiz. 2018b. Seismic performance and damage evaluation of a waffle–flat plate structure with hysteretic dampers through shake-table tests. Earthquake Engineering & Structural Dynamics 47 (5): 1250–69. doi: 10.1002/eqe.v47.5.
  • Benavent-Climent, A., L. Morillas, and D. Escolano-Margarit. 2014b. Seismic performance and damage evaluation of a reinforced concrete frame with hysteretic dampers through shake-table tests. Earthquake Engineering & Structural Dynamics 43 (15): 2399–417. doi: 10.1002/eqe.v43.15.
  • Burton, H. V., and M. Sharma. 2017. Quantifying the Reduction in collapse safety of main shock–damaged reinforced concrete frames with infills. Earthquake Spectra 33 (1): 25–44. doi: 10.1193/121015EQS179M.
  • Caetano, E., S. Silva, and J. Bateira. 2011. A vision system for vibration monitoring of civil engineering structures. Experimental Techniques 35 (4): 74–82. doi: 10.1111/ext.2011.35.issue-4.
  • Chang, C., and Y. Ji. 2007. Flexible videogrammetric technique for three-dimensional structural vibration measurement. Journal of Engineering Mechanics 133 (6): 656–64. doi: 10.1061/(ASCE)0733-9399(2007)133:6(656).
  • China Strong Motion Network Center. 2016. Database of Wenchuan strong ground motions. http://data.earthquake.cn/ (accessed July 28, 2019).
  • Cui, Y., X. Lu, and C. Jiang. 2017. Experimental investigation of tri-axial self-centering reinforced concrete frame structures through shaking table tests. Engineering Structures 132: 684–94. doi: 10.1016/j.engstruct.2016.11.066.
  • Dolce, M., D. Cardone, F. C. Ponzo, and C. Valente. 2015. Shaking table tests on reinforced concrete frames without and with passive control systems. Earthquake Engineering & Structural Dynamics 34 (14): 1687–717. doi: 10.1002/eqe.501.
  • Elwood, K. J., and J. P. Moehle. 2008. Dynamic collapse analysis for a reinforced concrete frame sustaining shear and axial failures. Earthquake Engineering & Structural Dynamics 37 (7): 991–1012. doi: 10.1002/()1096-9845.
  • Ghosh, J., J. E. Padgett, and M. Sánchez-Silva. 2015. Seismic damage accumulation in highway bridges in earthquake-prone regions. Earthquake Spectra 31 (1): 115–35. doi: 10.1193/120812EQS347M.
  • Goda, K. 2012. Nonlinear response potential of mainshock–aftershock sequences from Japanese earthquakes. Bulletin of the Seismological Society of America 102 (5): 2139–56. doi: 10.1785/0120110329.
  • Goda, K., and C. A. Taylor. 2012. Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes. Earthquake Engineering & Structural Dynamics 41 (15): 2311–30. doi: 10.1002/eqe.2188
  • Goda, K., and M. R. Salami. 2014. Inelastic seismic demand estimation of wood-frame houses subjected to mainshock-aftershock sequences. Bulletin of Earthquake Engineering 12 (2): 855–74. doi: 10.1007/s10518-013-9534-4.
  • Han, R., Y. Li, and J. van de Lindt. 2015. Impact of aftershocks and uncertainties on the seismic evaluation of non-ductile reinforced concrete frame buildings. Engineering Structures 100: 149–63. doi: 10.1016/j.engstruct.2015.05.039.
  • Han, R., Y. Li, and J. van de Lindt. 2016. Seismic risk of base isolated non-ductile reinforced concrete buildings considering uncertainties and mainshock-aftershock sequences. Structural Safety 50: 39–56. doi: 10.1016/j.strusafe.2014.03.010.
  • Harris, H. G., and G. M. Sabnis. 1999. Structural modeling and experimental techniques. Boca Raton: CRC Press.
  • Hatzigeorgiou, G. D. 2010a. Behavior factors for nonlinear structures subjected to multiple near-fault earthquakes. Computers & Structures 88 (5): 309–21. doi: 10.1016/j.compstruc.2009.11.006.
  • Hatzigeorgiou, G. D. 2010b. Ductility demand spectra for multiple near- and far-fault earthquakes. Soil Dynamics & Earthquake Engineering 30 (4): 170–83. doi: 10.1016/j.soildyn.2009.10.003.
  • Hatzigeorgiou, G. D., and A. A. Liolios. 2010. Nonlinear behaviour of RC frames under repeated strong ground motions. Soil Dynamics & Earthquake Engineering 30 (10): 1010–25. doi: 10.1016/j.soildyn.2010.04.013.
  • Hatzigeorgiou, G. D., and D. E. Beskos. 2009. Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes. Engineering Structures 31 (11): 2744–55. doi: 10.1016/j.engstruct.2009.07.002.
  • Hatzivassiliou, M., and G. D. Hatzigeorgiou. 2015. Seismic sequence effects on three-dimensional reinforced concrete buildings. Soil Dynamics & Earthquake Engineering 72: 77–88. doi: 10.1016/j.soildyn.2015.02.005.
  • Huang, Y., J. P. Wu, T. Z. Zhang, and D. N. Zhang. 2008. Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence. Science in China Series D: Earth Sciences 51 (12): 1703–11. doi: 10.1007/s11430-008-0135-z.
  • Iervolino, I., M. Giorgio, and E. Chioccarelli. 2014. Closed-form aftershock reliability of damage-cumulating elastic-perfectly-plastic systems. Earthquake Engineering & Structural Dynamics 43 (4): 613–25. doi: 10.1002/eqe.v43.4.
  • Jalayer, F., and H. Ebrahimian. 2017. Seismic risk assessment considering cumulative damage due to aftershocks. Earthquake Engineering & Structural Dynamics 46 (3): 369–89. doi: 10.1002/eqe.v46.3.
  • Jeon, J. S., R. DesRoches, L. N. Lowes, and I. Brilakis. 2015. Framework of aftershock fragility assessment–case studies: Older California reinforced concrete building frames. Earthquake Engineering & Structural Dynamics 44 (15): 2617–36. doi: 10.1002/eqe.2599.
  • Lemnitzer, A., L. M. Massone, D. A. Skolnik, J. C. de la Llera Martin, and J. W. Wallace. 2014. Aftershock response of RC buildings in Santiago, Chile, succeeding the magnitude 8.8 Maule earthquake. Engineering Structures 76: 324–38. doi: 10.1016/j.engstruct.2014.07.003.
  • Li, Q. W., and B. R. Ellingwood. 2007. Performance evaluation and damage assessment of steel frame buildings under main shock-aftershock earthquake sequences. Earthquake Engineering & Structural Dynamics 36 (3): 405–27. doi: 10.1002/()1096-9845.
  • Li, S., Z. Zuo, C. Zhai, S. Xu, and L. Xie. 2016. Shaking table test on the collapse process of a three-story reinforced concrete frame structure. Engineering Structrucs 118: 156–66. doi: 10.1016/j.engstruct.2016.03.032.
  • Li, Y., R. Song, and J. van de Lindt. 2014. Collapse fragility of steel structures subjected to earthquake mainshock-aftershock sequences. Journal of Structural Engineering 140 (12): 04014095. doi: 10.1061/(ASCE)ST.1943-541X.0001019.
  • Lu, X., Y. Cui, J. Liu, and W. Gao. 2015. Shaking table test and numerical simulation of a 1/2-scale self-centering reinforced concrete frame. Earthquake Engineering & Structural Dynamics 44 (12): 1899–917. doi: 10.1002/eqe.v44.12.
  • Lu, X., Y. Zou, W. Lu, and B. Zhao. 2007. Shaking table model test on Shanghai World Financial Center Tower. Earthquake Engineering & Structural Dynamics 36 (4): 439–57. doi: 10.1002/()1096-9845.
  • Mahin, S. A. 1980. “Effects of duration and aftershocks on inelastic design earthquakes,” Proceedings of the 7th world conference on earthquake engineering, Vol. 5, Istanbul, Turkey, pp. 677–80.
  • National Standard of the People’s Republic of China. 2001a. GB50009-2001 load code for the design of building structures. Beijing: China Architecture and Building Press.
  • National Standard of the People’s Republic of China. 2001b. GB50011-2001 code for seismic design of buildings. Beijing: China Architecture and Building Press.
  • National Standard of the People’s Republic of China. 2002. GB50010-2002 code for design of concrete structures. Beijing: China Architecture and Building Press.
  • National Standard of the People’s Republic of China. 2010. GB50011-2010 code for seismic design of buildings. Beijing: China Architecture and Building Press.
  • Oyguc, R., C. Toros, and A. E. Abdelnaby. 2018. Seismic behavior of irregular reinforced concrete structures under multiple earthquake excitations. Soil Dynamics & Earthquake Engineering 104: 15–32. doi: 10.1016/j.soildyn.2017.10.002.
  • Raghunandan, M., A. B. Liel, and N. Luco. 2015. Aftershock collapse vulnerability assessment of reinforced concrete frame structures. Earthquake Engineering & Structural Dynamics 44 (3): 419–39. doi: 10.1002/eqe.v44.3.
  • Richard, B., S. Cherubini, F. Voldoire, P.-E. Charbonnel, T. Chaudat, S. Abouri, and N. Bonfils. 2016. SMART 2013: Experimental and numerical assessment of the dynamic behavior by shaking table tests of an asymmetrical reinforced concrete structure subjected to high intensity ground motions. Engineering Structures 109: 99–116. doi: 10.1016/j.engstruct.2015.11.029.
  • Ruiz-Garcia, J. 2012. Mainshock-aftershock ground motion features and their influence in building’s seismic response. Journal of Earthquake Engineering 16 (5): 719–37. doi: 10.1080/13632469.2012.663154.
  • Ruiz-Garcia, J., M. V. Marin, and A. Teran-Gilmore. 2014. Effect of seismic sequences in reinforced concrete frame buildings located in soft-soil sites. Soil Dynamics & Earthquake Engineering 63: 56–68. doi: 10.1016/j.soildyn.2014.03.008.
  • Ruiz-Garcia, J., S. Yaghmaei-Sabegh, and E. Bojorquez. 2018. Three-dimensional response of steel moment-resisting buildings under seismic sequences. Engineering Structures 175: 399–414. doi: 10.1016/j.engstruct.2018.08.050.
  • Salami, M. R., M. M. Kashani, and K. Goda. 2019. Influence of advanced structural modeling technique, mainshock-aftershock sequences, and ground-motion types on seismic fragility of low-rise RC structures. Soil Dynamics & Earthquake Engineering 117: 263–79. doi: 10.1016/j.soildyn.2018.10.036.
  • Shan, B., S. Zheng, and J. Ou. 2015. Free vibration monitoring experiment of a stayed-cable model based on stereovision. Measurement 76: 228–39. doi: 10.1016/j.measurement.2015.08.025.
  • Shan, B., W. Yuan, H. Wang, Z. Zuo, and S. Li. 2018a. Stereovision monitoring for entire collapse of a three-story frame model under earthquake excitation. Structural Control & Health Monitoring 25 (6): e2161. doi: 10.1002/stc.v25.6.
  • Shan, B., Y. Pan, X. Huo, and G. Xian. 2018b. Detection of slip for CFRP-concrete interface using stereovision method corrected by epipolar constraint. Structural Control & Health Monitoring 25 (10): e2212. doi: 10.1002/stc.v25.10.
  • Shokrabadi, M., and H. V. Burton. 2018. Risk-based assessment of aftershock and mainshock-aftershock seismic performance of reinforced concrete frames. Structural Safety 73: 64–74. doi: 10.1016/j.strusafe.2018.03.003.
  • Shokrabadi, M., H. V. Burton, and J. P. Stewart. 2018. Impact of sequential ground motion pairing on mainshock-aftershock structural response and collapse performance assessment. Journal of Structural Engineering 144 (10): 04018177. doi: 10.1061/(ASCE)ST.1943-541X.0002170.
  • Song, R., Y. Li, and J. van de Lindt. 2016. Loss estimation of steel buildings to earthquake mainshock-aftershock sequences. Structural Safety 61: 1–11. doi:10.1016/j.strusafe.2016.03.002.
  • Sun, B., P. Yan, C. Hu, and M. Zhang. 2008. Overview on seismic damage to different structures in Yingxiu Town during Wenchuan Earthquake. Journal of Earthquake. Engineering & Engineering Vibration 28 (5): 1–9. [in Chinese].
  • Tesfamariam, S., K. Goda, and G. Mondal. 2015. Seismic vulnerability of reinforced concrete frame with unreinforced masonry infill due to mainshock-aftershock earthquake sequences. Earthquake Spectra 31 (3): 1427–49. doi: 10.1193/042313EQS111M.
  • van de Lindt, J. W. 2008. Experimental investigation of the effect of multiple earthquakes on wood frame structural integrity. Practice Periodical on Structural Design and Construction 13 (3): 111–17. doi: 10.1061/(ASCE)1084-0680(2008)13:3(111).
  • Yaghmaei-Sabegh, S., and J. Ruiz-Garcia. 2016. Nonlinear response analysis of SDOF systems subjected to doublet earthquake ground motions: A case study on 2012 Varzaghan-ahar events. Engineering Structures 110: 281–92. doi: 10.1016/j.engstruct.2015.11.044.
  • Ye, L., X. Lu, S. Zhao, and Y. Li. 2009. “Seismic collapse resistance of RC frame structures - Case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchuan Earthquake. Journal of Building Structures 30 (6): 67–76. [in Chinese].
  • Yu, X.-H., S. Li, D.-G. Lu, and J. Tao. 2018. Collapse capacity of inelastic single-degree-of-freedom systems subjected to mainshock-aftershock earthquake sequences. Journal of Earthquake Engineering. doi: 10.1080/13632469.2018.1453417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.