157
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Behaviour of Structures Isolated by HDNR Bearings at Design and Service Conditions

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1743-1766 | Received 07 Aug 2019, Accepted 25 Feb 2020, Published online: 19 Jun 2020

References

  • Ancheta, T. D., R. B. Darragh, J. P. Stewart, E. Seyhan, W. J. Silva, B. S. J. Chiou, K. E. Wooddell, R. W. Graves, A. R. Kottke, D. M. Boore, et al. 2014. NGA-West2 database. Earthquake Spectra 30 (3): 989–1005. doi:10.1193/070913EQS197M.
  • ASCE/SEI 7-10. 2010. Minimum design loads for buildings and other structures. Reston, Va: American Society of Civil Engineers : Structural Engineering Institute.
  • Barone, S., G. M. Calvi, and A. Pavese. 2017. Experimental dynamic response of spherical friction based isolation devices. Journal of Earthquake Engineering. doi: 10.1080/13632469.2017.1387201.
  • BS ISO 22762-3. 2005. Elastomeric seismic-protection isolators – Part 3: applications for buildings – Specification.
  • Calvi, P. M., and G. M. Calvi. 2018. Historical development of friction-based seismic isolation systems. Soil Dynamics and Earthquake Engineering 106: 14–30. doi: 10.1016/j.soildyn.2017.12.003.
  • Calvi, P. M., and T. J. Sullivan. 2014. Estimating floor spectra in multiple degree of freedom structures. Earthquakes and Structures 7 (1): 17–38. doi: 10.12989/eas.2014.7.1.017.
  • Castaldo, P., and E. Tubaldi. 2015. Influence of FPS bearing properties on the seismic performance of base‐isolated structures. Earthquake Engineering & Structural Dynamics 44 (15): 2817–36. doi: 10.1002/eqe.2610.
  • Chimamphant, S., and K. Kasai. 2016. Comparative response and performance of base-isolated and fixed-base structures. Earthquake Engineering & Structural Dynamics 45 (1): 5–27. doi: 10.1002/eqe.2612.
  • Christopoulos, C., and A. Filiatrault. 2006. Principles of passive supplemental damping and seismic isolation. Pavia, Italy: IUSS Press.
  • Clark, P. W., I. D. Aiken, and J. M. Kelly. 1997. Experimental studies of the ultimate behaviour of seismically isolated structures. Report No. UCB/EERC-97/18. Berkeley: Earthquake Engineering Research Center, University of California.
  • CS.LL.PP. 2018. Norme tecniche per le costruzioni,” Gazzetta Ufficiale della Repubblica Italiana.
  • Dall’Asta, A., E. Tubaldi, and L. Ragni. 2016. Influence of the nonlinear behavior of viscous dampers on the seismic demand hazard of building frames dampers. Earthquake Engineering and Structural Dynamics 45 (1): 149–69. doi: 10.1002/eqe.2623.
  • Dall’Asta, A., and L. Ragni. 2008. Dynamic systems with high damping rubber: Non linear behaviour and linear approximation. Earthquake Engineering & Structural Dynamics 37 (13): 1511–26. doi: 10.1002/eqe.825.
  • EN15129. 2018. Anti-seismic devices. European Committee for Standardization.
  • EN1998-1. 2013. Eurocode 8-Design of structures for earthquake resistance. European Committee for Standardization.
  • Filiatrautl, A., D. Perrone, R. J. Merino, and G. M. Calvi. 2018. Performance-based seismic design of nonstructural building elements. Journal of Earthquake Engineering 1–33. doi: 10.1080/13632469.2018.1512910.
  • Grant, D. N., G. L. Fenves, and A. S. Whittaker. 2004. Bidirectional modeling of high-damping rubber bearings. Journal of Earthquake Engineering 8 (1): 161–85. doi: 10.1080/13632460409350524.
  • Iervolino, I., A. Spillatura, and P. Bazzurro. 2018. Seismic reliability of code-conforming Italian buildings. Journal of Earthquake Engineering 22 (sup2): 5–27. doi: 10.1080/13632469.2018.1540372.
  • Isakovic, T., J. Zevnik, and M. Fischinger. 2011. Floor response spectra in isolated structures subjected to earthquakes weaker than the design earthquake—Part I: isolation with high-damping rubber bearings. Structural Control and Health Monitoring 18 (6): 635–59. doi: 10.1002/stc.392.
  • Kelly, J. M., and D. Konstantinidis. 2011. Mechanics of rubber bearings for seismic and vibration isolation. Chichester, UK: John Wiley & Sons, Ltd.
  • Kelly, V., and M. R. Marsico. 2015. The influence of damping on floor spectra in seismic isolated nuclear structures. Structural Control and Health Monitoring 22 (4): 743–56. doi: 10.1002/stc.1715.
  • Kikuchi, M., and I. D. Aiken. 1997. An analytical hysteresis model for elastomeric seismic isolation bearings. Earthquake Engineering and Structural Dynamics 26 (2): 215–31. doi: 10.1002/(SICI)1096-9845(199702)26:2<215::AID-EQE640>3.0.CO;2-9.
  • Kikuchi, M., T. Nakamura, and I. D. Aiken. 2010. Three-dimensional analysis for square seismic isolation bearings under large shear deformations and high axial loads. Earthquake Engineering & Structural Dynamics 39 (13): 1513–31. doi: 10.1002/eqe.1042.
  • Kumar, M. 2015. Seismic isolation of nuclear power plants using elastomeric bearings. Ph.D. dissertation, Buffalo: University at Buffalo, The State University of New York.
  • Kumar, M., and A. S. Whittaker. 2014. e Constantinou MC. An advanced numerical model of elastomeric seismic isolation bearings. Earthquake Engineering & Structural Dynamics 43 (13): 1955–1974. doi: 10.1002/eqe.2431.
  • Losanno, D., H. A. Hadad, and G. Serino. 2019. Design charts for eurocode-based design of elastomeric seismic isolation systems. Soil Dynamics and Earthquake Engineering 119: 488–98. doi: 10.1016/j.soildyn.2017.12.017.
  • Losanno, D., I. E. Madera Sierra, M. Spizzuoco, J. Marulanda, and P. Thomson. 2019a. Experimental assessment and analytical modeling of novel fiber-reinforced isolators in unbounded configuration. Composite Structures 212: 66–82. doi: 10.1016/j.compstruct.2019.01.026.
  • Losanno, D., I. E. Madera Sierra, M. Spizzuoco, J. Marulanda, and P. Thomson. 2019b. Experimental performance of unbonded polyester fiber reinforced elastomeric isolators under bidirectional seismic excitations. Engineering Structures. doi: 10.1016/j.engstruct.2019.110003.
  • Lubkowski, Z. A. 2010. Deriving the seismic action for alternative return periods according to Eurocode 8. 10th European conference on earthquake engineering, Ohrid.
  • Madera Sierra, I. E., D. Losanno, S. Strano, J. Marulanda, and P. Thomson. 2019. Development and experimental behavior of HDR seismic isolators for low-rise residential buildings. Engineering Structures 183: 894–906. doi: 10.1016/j.engstruct.2019.01.037.
  • Makris, N., and S. P. Changt. 2000. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures. Earthquake Engineering & Structural Dynamics 29 (1): 85–107. doi: 10.1002/(SICI)1096-9845(200001)29:1<85::AID-EQE902>3.0.CO;2-N.
  • McKenna, F., G. Fenves, and M. Scott. 2006. Computer program opensees: Open system for earthquake engineering simulation. Berkeley: Pacific Earthquake Engineering Center, University of California.
  • Montuori, G. M., E. Mele, G. Marrazzo, G. Brandonisio, and A. De Luca. 2016. Stability issues and pressure–shear interaction in elastomeric bearings: The primary role of the secondary shape factor. Bulletin of Earthquake Engineering 14 (2): 569–97. doi: 10.1007/s10518-015-9819-x.
  • Mullins, L. 1969. Softening of rubber by deformation. Rubber Chemistry and Technology 42 (1): 339–62. doi: 10.5254/1.3539210.
  • Naeim, F., and M. K. Kelly. 1999. Design of seismic isolated structures. New York: Wiley.
  • Occhiuzzi, A. 2009. Additional viscous dampers for civil structures: analysis of design methods based on effective evaluation of modal damping ratios. Engineering Structures 31 (5): 1093–101. doi: 10.1016/j.engstruct.2009.01.006.
  • Pant, D., A. Wijeyewickrema, and M. A. ElCawady. 2013. Appropriate viscous damping for nonlinear time-history analysis of base-isolated reinforced concrete buildings. Earthquake Engineering & Structural Dynamics 42 (15): 2321–39. doi: 10.1002/eqe.2328.
  • Ragni, L., D. Cardone, N. Conte, A. Dall’Asta, A. Di Cesare, A. Flora, G. Leccese, F. Micozzi, and C. Ponzo. 2018a. Modelling and seismic response analysis of Italian code-conforming base-isolated buildings. Journal of Earthquake Engineering 22 (sup2): 198–230. doi: 10.1080/13632469.2018.1527263.
  • Ragni, L., E. Tubaldi, A. Dall’Asta, H. Ahmadi, and A. Muhr. 2018b. Biaxial shear behaviour of HDNR with Mullins effect and deformation-induced anisotropy. Engineering Structures 154: 78–92. doi: 10.1016/j.engstruct.2017.10.060.
  • Ryan, K. L., and J. Polanco. 2008. Problems with Rayleigh damping in base-isolated buildings. Journal of Structural Engineering 134 (11): 1780–84. doi: 10.1061/(ASCE)0733-9445(2008)134:11(1780).
  • Scozzese, F., A. Dall’Asta, and E. Tubaldi. 2019. Seismic risk sensitivity of structures equipped with anti-seismic devices with uncertain properties. Structural Safety 77: 30–47. doi: 10.1016/j.strusafe.2018.10.003.
  • Tubaldi, E., L. Ragni, A. Dall’Asta, H. Ahmadi, and A. Muhr. 2017. Stress softening behaviour of HDNR bearings: Modelling and influence on the seismic response of isolated structures. Earthquake Engineering and Structural Dynamics 46 (12): 2033–54.
  • Yang, T. Y., D. Konstantinidis, and J. M. Kelly. 2010. The influence of isolator hysteresis on equipment performance in seismic isolated buildings. Earthquake Spectra 26 (1): 275–93. doi: 10.1193/1.3276901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.