354
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Simplified Framework for Seismic Fragility Assessment of Reinforced Concrete Columns under Different Failure Patterns

, , &
Pages 4635-4656 | Received 09 Jun 2020, Accepted 06 Oct 2020, Published online: 03 Nov 2020

References

  • Aboutaha, R. S., and R. I. Machado. 1999. Seismic resistance of steel-tubed high-strength reinforced-concrete columns. Journal of Structural Engineering 125(5): 485–494. doi:https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(485)
  • Amitsu, S., N. Shirai, H. Adachi, and A. Ono. 1991. Deformation of reinforced concrete column with high or fluctuating axial force. Transactions of the Japan Concrete Institute 13: 355–362.
  • Ancheta, T. D., R. B. Darragh, J. P. Stewart, E. Seyhan, W. J. Silva, B. S. J. Chiou, K. E. Wooddell, R. W. Graves, A. R. Kottke, D. M. Boore, et al. 2014. NGA-West2 database. Earthquake Spectra 30: 989–1005. doi: https://doi.org/10.1193/070913EQS197M.
  • Ang, B. G. 1981. Ductility of reinforced concrete bridge piers under seismic loading. Dissertation. University of Canterbury, New Zealand.
  • Arakawa, T., Y. Arai, K. Egashira, and Y. Fujita. 1982. Effects of the rate of cyclic loading on the load-carrying capacity and inelastic behavior of reinforced concrete columns. Transactions of the Japan Concrete Institute 4: 485–492.
  • Arakawa, T., Y. Arai, M. Mizoguchi and M. Yoshida. 1989. Shear resisting behavior of short reinforced concrete columns under biaxial bending-shear. Transactions of the Japan Concrete Institute 11: 317–324.
  • Atalay, M. B., and J. Penzien. 1975. The seismic behavior of critical regions of reinforced concrete components as influenced by moment, shear and axial force. Berkeley, CA: Earthquake Engineering Research Center, University of California.
  • Azizinamini, A., W. G. Corley, and L. S. P. Johal. 1988. Effects of transverse reinforcement on seismic performance of columns. ACI Structural Journal 89 (4): 442–450.
  • Baker, J. W. 2008. Probabilistic structural response assessment using vector‐valued intensity measures. Earthquake Engineering & Structural Dynamics 36 (13): 1861–83. doi: https://doi.org/10.1002/eqe.700.
  • Baker, J. W., and C. A. Cornell. 2006. Spectral shape, epsilon and record selection. Earthquake Engineering & Structural Dynamics 35 (9): 1077–95. doi: https://doi.org/10.1002/eqe.571.
  • Basone, F., L. Cavaleri, F. Di Trapani, and G. Muscolino. 2017. Incremental dynamic based fragility assessment of reinforced concrete structures: Stationary vs. non-stationary artificial ground motions. Soil Dynamics and Earthquake Engineering 103: 105–17. doi: https://doi.org/10.1016/j.soildyn.2017.09.019.
  • Basone, F., P. Castaldo, L. Cavaleri, and F. Di Trapani. 2019. Response spectrum analysis of frame structures: Reliability-based comparison between complete quadratic combination and damping-adjusted combination. Bulletin of Earthquake Engineering 17 (5): 2687–713. doi: https://doi.org/10.1007/s10518-019-00559-7.
  • Bayrak, O., and S. Sheikh. 1966. Confinement steel requirements for high strength concrete columns. Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico.
  • Bechtoula, H., S. Kono, and F. Watanabe. 2002. Experimental and analytical investigations of seismic performance of cantilever reinforced concrete columns under varying transverse and axial loads. Journal of Asian Architecture and Building Engineering 4: 467–474.
  • Berry, M., M. Parrish, and M. Eberhard. 2004. PEER structural performance database user’s manual. Berkeley: Pacific Earthquake Engineering Research Center, University of California.
  • Bett, B. J., J. O. Jirsa, and R. E. Klingner. 1985. Behavior of strengthened and repaired reinforced concrete columns under cyclic deformations, Phil M. Austin, TX: Ferguson Structural Engineering Laboratory, University of Texas at Austin.
  • Cheng, H., H. N. Li, Y. B. Yang, and D. S. Wang. 2019. Seismic fragility analysis of deteriorating RC bridge columns with time-variant capacity index. Bulletin of Earthquake Engineering 17: 4247–67. doi: https://doi.org/10.1007/s10518-019-00628-x.
  • Chopra, A. K. 1995. Dynamics of structures: Theory and applications to earthquake engineering. Upper Saddle River, NJ: Prentice Hall. Inc.
  • Cimellaro, G. P., A. M. Reinhorn, A. D’Ambrisi, and M. De Stefano. 2011. Fragility analysis and seismic record selection. Journal of Structural Engineering 137 (3): 379–90. doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000115.
  • Ding, R., M. X. Tao, J. G. Nie, and Y. L. Mo. 2016. Shear deformation and sliding-based fiber beam-column model for seismic analysis of reinforced concrete coupling beams. Journal of Structural Engineering 142 (7): 04016032. doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001478.
  • Du, W., and G. Wang. 2017. Prediction equations for ground-motion significant durations using the NGA-West2 database. Bulletin of the Seismological Society of America 107 (1): 319–33. doi: https://doi.org/10.1785/0120150352.
  • Du, W., S. Long, and C. L. Ning. 2020. An algorithm for selecting spatially correlated ground motions at multiple sites under scenario earthquakes. Journal of Earthquake Engineering. doi: https://doi.org/10.1080/13632469.2019.1688736.
  • Du, W., X. Yu, and C. L. Ning. 2020. Influence of earthquake duration on structural collapse assessment using hazard-consistent ground motions for shallow crustal earthquakes. Bulletin of Earthquake Engineering 18 (7): 3005–23. doi: https://doi.org/10.1007/s10518-020-00814-2.
  • FEMA. 2003. HAZUS-MH MR1: Technical manual, Vol. Earthquake Model. Washington D.C: Federal Emergency Management Agency.
  • Feng, D. C., G. Wu, Z. Y. Sun, and J. G. Xu. 2017. A flexure–shear Timoshenko fiber beam element based on softened damage-plasticity model. Engineering Structure 140: 483–97. doi: https://doi.org/10.1016/j.engstruct.2017.02.066.
  • Feng, D. C., and J. Xu. 2018. An efficient fiber beam-column element considering flexure-shear iteration and anchorage bond-slip effect for cyclic analysis of RC structures. Bulletin of Earthquake Engineering 16 (11): 5425–52. doi: https://doi.org/10.1007/s10518-018-0392-y.
  • Franchin, P., A. Lupoi, F. Noto, and S. Tesfamariam. 2016. Seismic fragility of reinforced concrete girder bridges using Bayesian belief network. Earthquake Engineering & Structural Dynamics 45: 29–44. doi: https://doi.org/10.1002/eqe.2613.
  • Galeota, D., M. M. Giammatteo, and R. Marino. 1996. Seismic resistance of high strength concrete columns. Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico.
  • Gill, W. D. 1979. Ductility of rectangular reinforced concrete columns with axial load, Dissertation. Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
  • Imai, H., and Y. Yamamoto. 1986. A study on causes of earthquake damage of Izumi high school due to Miyagi-Ken-Oki earthquake in 1978. Transactions of the Japan Concrete Institute 08 (01): 405–418.
  • Jalaye, F., and C. A. Cornell. 2009. Alternative non‐linear demand estimation methods for probability‐based seismic assessments. Earthquake Engineering & Structural Dynamics 38: 951–72.
  • Jalayer, F., H. Ebrahimian, A. Miano, G. Manfredi, and H. Sezen. 2017. Analytical fragility assessment using unscaled ground motion records. Earthquake Engineering & Structural Dynamics 46 (15): 2639–63. doi: https://doi.org/10.1002/eqe.2922.
  • Jalayer, F., R. De Risi, and G. Manfredi. 2015. Bayesian cloud analysis: Efficient structural fragility assessment using linear regression. Bulletin of Earthquake Engineering 13 (4): 1183–203. doi: https://doi.org/10.1007/s10518-014-9692-z.
  • Kafali, C., and M. Grigoriu. 2007. Seismic fragility analysis: Application to simple linear and nonlinear systems. Earthquake Engineering & Structural Dynamics 36 (13): 1885–900. doi: https://doi.org/10.1002/eqe.726.
  • Kanda, M., N. Shirai, H. Adachi, and T. M., Sato. 1988. Analytical study on elasto-plastic hysteretic behavior of reinforced concrete members. Transaction of the Japan Concrete Institute 10: 257–264.
  • Kowalsky, M. J. 2000. Deformation limit states for circular reinforced concrete bridge columns. Journal of Structural Engineering 126 (8): 869–78. doi: https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(869).
  • Lee, C. L., and F. C. Filippou. 2009. Efficient beam column element with variable inelastic end zones. Journal of Structural Engineering 135 (11): 1310–19. doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000064.
  • Lu, Y., X. M. Gu, and J. Guan. 2005. Probabilistic drift limits and performance evaluation of reinforced concrete columns. Journal of Structural Engineering 131 (6): 966–78. doi: https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(966).
  • Lynn, A. C., J. P. Moehle, S. A. Mahin, and W. Holmes. 1966. Seismic evaluation of existing reinforced concrete building columns. Earthquake Spectra 12(4): 715–739.
  • Lynn, A. C. 1998. Seismic evaluation of existing reinforced concrete building columns. Dissertation. University of California, Berkeley, USA .
  • Mackie, K. R., and B. Stojadinovic 2005. Comparison of incremental dynamic, cloud, and stripe methods for computing probabilistic seismic demand models. New York: Structures Congress, 1–11.
  • Matamoros, A. B. 1999. Study of drift limits for high-strength concrete columns. Dissertation. University of Illinois at Urbana-Champaign, USA.
  • Mangalathu, S., and J. Jeon. 2019. Stripe-based fragility analysis of multi-span concrete bridge classes using machine learning techniques. Earthquake Engineering & Structural Dynamics 48 (11): 1238–1255.
  • Mergos, P. E., and A. J. Kappos. 2010. Seismic damage analysis including inelastic shear-flexure interaction. Bulletin of Earthquake Engineering 8 (1): 27–46. doi: https://doi.org/10.1007/s10518-009-9161-2.
  • Miano, A., F. Jalayer, H. Ebrahimian, and A. Prota. 2018. Cloud to IDA: Efficient fragility assessment with limited scaling. Earthquake Engineering & Structural Dynamics 47 (5): 1124–47. doi: https://doi.org/10.1002/eqe.3009.
  • Mo, Y. L., and S. J. Wang. 2000. Seismic behavior of RC columns with various tie configurations. Journal of Structural Engineering 126(10): 1122–1130.
  • Muguruma, H., F. Watanabe, and T. Komuro. 1989. Applicability of high strength concrete to reinforced concrete ductile column. Transactions of the Japan Concrete Institute 11(1): 309–316.
  • Nagasaka, T. 1982. Effectiveness of steel fiber as web reinforcement in reinforced concrete columns. Transactions of the Japan Concrete Institute 04: 493–500.
  • Ning, C. L., and B. Li. 2017. Numerical investigation of variable length of seismic damage region for reinforced concrete columns. Journal of Earthquake Engineering 21 (6): 961–84.
  • Ning, C. L., and D. C. Feng. 2019. Probabilistic indicator to classify the failure mode of reinforced concrete columns. Magazine of Concrete Research 71 (14): 734–48. doi: https://doi.org/10.1680/jmacr.17.00097.
  • Ning, C. L., Y. Chen, and X. H. Yu. 2019. A simplified approach to investigate the seismic ductility demand of shear-critical reinforced concrete columns based on experimental calibration. Journal of Earthquake Engineering. doi: https://doi.org/10.1080/13632469.2019.1605949.
  • Nosho, K., J. Stanton, and G. MacRae. 1996. Retrofit of rectangular reinforced concrete columns using tonen forca tow sheet carbon fiber wrapping. Seattle, WA: Department of Civil Engineering, University of Washington.
  • Ono, A., N. Shirai, H. Adachi, and Y. Sakamaki. 1989. Elasto-plastic behavior of reinforced concrete column with fluctuating axial force. Transactions of the Japan Concrete Institute 11: 239–246.
  • Park, R., and T. Paulay. 1990. Use of interlocking spirals for transverse reinforcement in bridge columns, strength and ductility of concrete substructures of bridges. RRU (Road Research Unit) Bulletin 84(1): 77–92.
  • Paultre, P., F. Légeron, and D. Mongeau. 2001. Influence of concrete strength and yield strength of ties on the behavior of high-strength concrete columns. ACI Structural Journal 98(4): 490–501.
  • Paultre, P., and F. Légeron. 2000. Behavior of high-strength concrete columns under cyclic flexure and constant axial load. ACI Structural Journal 97(4): 591–601.
  • Pelliciari, M., G. C. Marano, T. Cuoghi, B. Briseghella, D. Lavorato, and A. M. Tarantino. 2018. Parameter identification of degrading and pinched hysteretic systems using a modified Bouc-Wen model. Structural and Infrastructure Engineering 14 (12): 1573–85.
  • Petrangeli, M., P. E. Pinto, and V. Ciampi. 1999. Fiber element for cyclic bending and shear of RC structures. I: Theory. Journal of Engineering Mechanics 125 (9): 994–1001. doi: https://doi.org/10.1061/(ASCE)0733-9399(1999)125:9(994).
  • Pujol, S. 2002. Drift capacity of reinforced concrete columns subjected to displacement reversals. Dissertation. Purdue University, USA.
  • Saatcioglu, M., and M. Grira. 1999. Confinement of reinforced concrete columns with welded reinforcement grids. ACI Structural Journal 96(1): 29–39.
  • Saatcioglu, M., and G. Ozcebe. 1989. Response of reinforced concrete columns to simulated seismic loading. ACI Structural Journal 86(1): 3–12.
  • Sakai, Y., J. Hibi, S. Otani, and H. Aoyama. 1990. Experimental study on flexural behavior of reinforced concrete columns using high-strength concrete. Transactions of the Japan Concrete Institute 12: 323–330.
  • Saritas, A., and F. C. Filippou. 2009. Inelastic axial-flexure–shear coupling in a mixed formulation beam finite element. International Journal of Non-linear Mechanics 44 (8): 913–22. doi: https://doi.org/10.1016/j.ijnonlinmec.2009.06.007.
  • Scott, M. H., and G. L. Fenves. 2006. Plastic hinge integration methods for force-based beam column elements. Journal of Structural Engineering 132: 244–52. doi: https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244).
  • Sengupta, P., and B. Li. 2013. Modified Bouc-Wen model for hysteresis behavior of RC beam-column joints with limited transverse reinforcement. Engineering Structures 46: 392–406. doi: https://doi.org/10.1016/j.engstruct.2012.08.003.
  • Sengupta, P., and B. Li. 2016. Seismic fragility assessment of lightly reinforced concrete structural walls. Journal of Earthquake Engineering 20: 809–40. doi: https://doi.org/10.1080/13632469.2015.1104755.
  • Sezen, H., and J. P. Moehle. 2006. Seismic test of concrete columns with light transverse reinforcement. ACI Structural Journal 103(6): 842–849.
  • Shome, N., C. A. Cornell, P. Bazzurro, and J. E. Carballo. 1998. Earthquakes, records, and nonlinear response. Earthquake Spectra 14 (3): 469–500.
  • Soesianawati, M. T., R. Park, and M. J. N. Priestley. 1986. Limited ductility design of reinforced concrete columns. Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
  • Spacone, E., and A. Marini. 2006. Analysis of reinforced concrete elements including shear effects. ACI Structural Journal 103 (5): 645–55.
  • Spacone, E., F. C. Filippou, and F. F. Taucer. 1996. Fibre beam-column model for non-linear analysis of RC frames, Part I: Formulation. Earthquake Engineering & Structural Dynamics 25: 711–25. doi: https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9.
  • Sugano, S. 1996. Seismic behavior of reinforced concrete columns which used ultra-high-strength concrete. Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico.
  • Stramandinoli, R. S. B., and H. L. L. Rovere. 2012. FE model for nonlinear analysis of reinforced concrete beams considering shear deformation. Engineering Structures 35: 244–53. doi: https://doi.org/10.1016/j.engstruct.2011.11.019.
  • Takemura, H., and K. Kazuhik. 1997. Effect of loading hysteresis on ductility capacity of reinforced concrete bridge piers. Journal of Structural Engineering 43: 849–858.
  • Tanaka, H., and R. Park. 1990. Effect of lateral confining reinforcement on the ductile behavior of reinforced concrete columns. Department of Civil Engineering, University of Canterbury, New Zealand.
  • Thomsen, J., and J. Wallace. 1994. Lateral load behavior of reinforced concrete columns constructed using high-strength materials. ACI Structural Journal 91(5): 605–615.
  • Torbol, M., and M. Shinozuka. 2012. Effect of the angle of seismic incidence on the fragility curves of bridges. Earthquake Engineering & Structural Dynamics 41: 2111–24. doi: https://doi.org/10.1002/eqe.2197.
  • Umehara, H., and J. O. Jirsa. 1982. Shear strength and deterioration of short reinforced concrete columns under cyclic deformations. Department of Civil Engineering, University of Texas at Austin, USA.
  • Vamvatsikos, D., and C. A. Cornell. 2002. Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics 31 (3): 491–512. doi: https://doi.org/10.1002/eqe.141.
  • Watson, S., and R. Park. 1989. Design of reinforced concrete frames of limited ductility. Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
  • Wehbe, N., M. S. Saiidi, and D. Sanders. 1999. Seismic performance of rectangular bridge columns with moderate confinement. ACI Structural Journal 96(2): 248–258.
  • Wight, J. K., and M. A. Sozen. 1973. Shear strength decay in reinforced concrete columns subjected to large deflection reversals. University of Illinois, Urbana-Champaign, USA.
  • Williams, M. S., and R. G. Sexsmith. 1995. Seismic damage indices for concrete structures: A state-of-the-art review. Earthquake Spectra 11 (2): 319–49. doi: https://doi.org/10.1193/1.1585817.
  • Xiao, Y., and A. Martirossyan. 1998. Seismic performance of high-strength concrete columns. Journal of Structural Engineering 124(3): 241–251.
  • Xu, J. G., G. Wu, D. C. Feng, D. M. Cotsovos, and Y. Lu. 2020. Seismic fragility analysis of shear-critical concrete columns considering corrosion induced deterioration effects. Soil Dynamics and Earthquake Engineering 134: 106165.
  • Xu, S. Y., and J. Zhang. 2011. Hysteretic shear-flexure interaction model of reinforced concrete columns for seismic response assessment of bridges. Earthquake Engineering & Structural Dynamics 40 (3): 315–37. doi: https://doi.org/10.1002/eqe.1030.
  • Yu, X. H., D. G. Lu, and B. Li. 2016. Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis. Earthquakes and Structures 10 (1): 141–61. doi: https://doi.org/10.12989/eas.2016.10.1.141.
  • Yu, X. H., D. G. Lu, and B. Li. 2017. Relating seismic design level and seismic performance: Fragility-based investigation of RC moment-resisting frame buildings in China. Journal of Performance of Constructed Facilities 31 (5): 04017075. doi: https://doi.org/10.1061/(ASCE)CF.1943-5509.0001069.
  • Zahn, F. A., R. Park, and M. J. N. Priestley. 1986. Design of reinforced bridge columns for strength and ductility. Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
  • Zhou, X., Y. Higashi, W. Jiang, and Y. Shimizu. 1985. Behavior of reinforced concrete column under high axial load. Transactions of the Japan Concrete Institute 7: 385–392.
  • Zhou, X., T. Satoh, W. Jiang, A. Ono and Y. Shimizo. 1987. Behavior of reinforced concrete short column under high axial load. Transactions of the Japan Concrete Institute 9: 541–548.
  • Ohno, T., and T. Nishioka. 1984. An experimental study on energy absorption capacity of columns in reinforced concrete structures. Proceedings of the JSCE, Structural Engineering/Earthquake Engineering 01(2): 137–147.
  • Ohue, M., H. Morimoto, S. Fujii and S. Morita. 1985. The behavior of RC short columns failing in splitting bond-shear under dynamic lateral loading. Transactions of the Japan Concrete Institute 7: 293–300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.