374
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Regional Ground Motion Prediction Equation Developed for the Korean Peninsula Using Recorded and Simulated Ground Motions

ORCID Icon &
Pages 5384-5406 | Received 14 May 2020, Accepted 27 Dec 2020, Published online: 25 Feb 2021

References

  • Aki, K. 1967. Scaling law of seismic spectrum. Journal of Geophysical Research Atmospheres 72: 1217–31. doi: 10.1029/JZ072i004p01217.
  • Anbazhagan, P., M. Sreenivas, B. Ketan, S. S. R. Moustafa, and N. S. N. Al-Arifi. 2016. Selection of ground motion prediction equations for seismic hazard analysis of Peninsular India. Journal of Earthquake Engineering 20 (5): 699–737. doi: 10.1080/13632469.2015.1104747.
  • Anderson, J. G., and J. N. Brune. 1999. Probabilistic seismic hazard analysis without the ergodic assumption. Seismological Research Letters 70 (1): 19–28. doi: 10.1029/JZ072i004p01217.
  • Anderson, J. G., and S. Hough. 1984. A model for the shape of the Fourier amplitude spectrum at high frequencies. Bulletin of the Seismological Society of America 74 (1969–1993). http://bssa.geoscienceworld.org/content/74/5/1969.abstract
  • Atkinson, G. M., and D. M. Boore. 1998. Evaluation of models for earthquake source spectra in Eastern North America. Bulletin of Seismological Society of America 88 (4): 917–934.
  • Atkinson, G. M., and D. M. Boore. 1995. Ground-motion relations for Eastern North America. Bulletin of the Seismological Society of America 85 (1): 17–30.
  • Atkinson, G. M., and D. M. Boore. 2006. Earthquake ground-motion prediction equations for Eastern North America. Bulletin of the Seismological Society of America 96 (6): 2181–205. doi: 10.1785/0120050245.
  • Atkinson, G. M., and D. M. Boore. 2014. The attenuation of fourier amplitudes for rock sites in Eastern North America. Bulletin of the Seismological Society of America 104 (1): 513–28. doi: 10.1785/0120130136.
  • Atkinson, G. M., and J. Adams. 2013. Ground motion prediction equations for application to the 2015 Canadian national seismic hazard maps. Canadian Journal of Civil Engineering 40 (10): 1–30. doi: 10.1139/cjce-2012-0544.
  • Atkinson, G. M., and J. F. Cassidy. 2000. Integrated use of seismograph and strong-motion data to determine soil amplification: Response of the Fraser River Delta to the Duvall and Georgia Strait Earthquakes. Bulletin of the Seismological Society of America 90 (4): 1028–40. doi: 10.1785/0119990098.
  • Atkinson, G. M., and R. F. Mereu. 1992. The shape of ground motion attenuation curves in Southeastern Canada. Bulletin of the Seismological Society of America 82 (5): 2014–31.
  • Boatwright, J., and G. L. Choy. 1992. Acceleration source spectra anticipated for large earthquakes in Northeastern North America. Bulletin of the Seismological Society of America 82 (2): 660–82.
  • Boore, D. M. 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America 73 (6A): 1865–94.
  • Boore, D. M. 2003. Simulation of ground motion using the stochastic method. Pure and Applied Geophysics 160 (3–4): 635–76. doi: 10.1007/PL00012553.
  • Boore, D. M., and G. M. Atkinson. 1987. Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in Eastern North America. Bulletin of the Seismological Society of America 77 (2): 440–67.
  • Boore, D. M., and J. Boatwright. 1984. Average body-wave radiation coefficients. Bulletin of the Seismological Society of America 74 (5): 1615–21.
  • Bora, S. S., F. Scherbaum, N. Kuehn, and P. Stafford. 2016. On the relationship between Fourier and response spectra: Implications for the adjustment of empirical ground-motion prediction equations (GMPEs). Bulletin of the Seismological Society of America 106 (3): 1235–53. doi: 10.1785/0120150129.
  • Bozorgnia, Y., and K. W. Campbell. 2016. Vertical ground motion model for PGA, PGV, and linear response spectra using the NGA-West2 database. Earthquake Spectra 32 (2): 979–1004. (BC2016V). doi: 10.1193/072814eqs121m.
  • Brune, J. 1970. Tectonic stress and the spectra of seismic shear waves. Journal of Geophysical Research Atmospheres 75: 4997–5009. doi: 10.1029/JB075i026p04997.
  • Brune, J. 1971. Correction: tectonic stress and the spectra of seismic shear waves. Journal of Geophysical Research Atmospheres 76: 5002. doi: 10.1029/JB076i020p05002.
  • Campbell, K. W. 2003. Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in Eastern North America. Bulletin of the Seismological Society of America 93: 1012–33. doi: 10.1785/0120020002.
  • Campbell, K. W. 2011. Ground motion simulation using the hybrid empirical method: Issues and insights, in earthquake data in engineering seismology: Predictive models, data management and networks. Geotechnical, Geological and Earthquake Engineering 14: 81–95. doi: 10.1007/978-94-007-0152-6_7.
  • Campbell, K. W., and Y. Bozorgnia. 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24 (1): 139–71. doi: 10.1193/1.2857546.
  • Douglas, J., H. Bungum, and F. Scherbaum. 2006. Ground-motion prediction equations for Southern Spain and Southern Norway obtained using the composite model perspective. Journal of Earthquake Engineering 10 (1): 33–72. doi: 10.1080/13632460609350587.
  • Drouet, S., and F. Cotton. 2015. Regional stochastic GMPEs in low-seismicity areas: Scaling and aleatory variability analysis—application to the french alps. Bulletin of the Seismological Society of America 105 (4). doi: 10.1785/0120140240.
  • Gülerce, Z., R. Kamai, N. A. Abrahamson, and W. J. Silva. 2017. Ground motion prediction equations for the vertical ground motion component based on the NGA-W2 database. Earthquake Spectra 33 (2): 499–528. doi: 10.1193/121814EQS213M.
  • Han, S. W., T.-O. Kim, D. H. Kim, and S.-J. Baek. 2017. Seismic collapse performance of special moment steel frames with torsional irregularities. Engineering Structures 141: 482–94. doi: 10.1016/j.engstruct.2017.03.045.
  • Hanks, T. C., and H. Kanamori. 1979. A moment magnitude scale. Journal of Geophysical Research Atmospheres 84 (B5): 2348–50. doi: 10.1029/JB084iB05p02348.
  • Hung, T. V., and O. Kiyomiya. 2013. Source parameter estimation and stochastic ground motion simulation based on recorded accelerograms in Northwestern Vietnam. Journal of Earthquake Engineering 17 (3): 304–22. doi: 10.1080/13632469.2012.719484.
  • Jee, H. W., and S. W. Han. 2020. Estimation of path attenuation effect from ground motion in the Korean Peninsula using stochastic point-source model. Journal of the Earthquake Engineering Society of Korea 24 (1): 9–17. [in Korean). doi:10.5000/EESK.2020.24.1.009.
  • Johnston, A. C. 1996. Seismic moment assessment of earthquakes in stable continental regions - I. Instrumental seismicity. Geophysical Journal International 124: 381–414. doi: 10.1111/j.1365-246X.1996.tb07028.x.
  • Joshi, A. 2006. Use of acceleration spectra for determining the frequency-dependent attenuation coefficient and Source Parameters. Bulletin of the Seismological Society of America 96 (6): 2165–80. doi: 10.1785/0120050095.
  • Joshi, A., M. Tomer, S. Lal, S. Chopra, S. Singh, S. Prajapati, M. L. Sharma, and Sandeep. 2016. Estimation of the source parameters of the Nepal Earthquake from strong motion data. Natural Hazards 83: 867–83. doi: 10.1007/s11069-016-2351-8.
  • Kalkan, E. 2016. An automatic P-phase arrival-time picker. Bulletin of the Seismological Society of America 106 (3). doi: 10.1785/0120150111.
  • Kim, S. K. 1995. A study on the crustal structure of the Korean Peninsula. Journal of the Geological Society of Korea 8: 393–403. [in Korean].
  • KMA. 2018. Investigation of the 2017 Pohang earthquake. Korea Meteorological Administration, Seoul, Korea [in Korean). pp. 48.
  • Kong, Q., D. Trugman, Z. E. Ross, M. J. Bianco, B. J. Meade, and P. Gerstoft. 2018. Machine learning in seismology: Turning data into insights. Seismological Research Letters 90 (1). doi: 10.1785/0220180259.
  • Konno, K., and T. Ohmachi. 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America 88 (1): 228–41.
  • Moon, K. H., S. W. Han, T. S. Lee, and S. W. Seok. 2012. Approximate MPA-based method for performing incremental dynamic analysis. Nonlinear Dynamics 67 (4): 2865–88. doi: 10.1007/s11071-011-0195-z.
  • Nabilah, A. B., and T. Balendra. 2012. Seismic hazard analysis for Kuala Lumpur, Malaysia. Journal of Earthquake Engineering 16 (7): 1076–94. doi: 10.1080/13632469.2012.685208.
  • Nakamura, Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research Institute 30 (1): 25–33.
  • Papazafeiropoulos, G., and V. Plevris. 2018. OpenSeismoMatlab: A new open-source software for strong ground motion data processing. Heliyon 4 (9): e00784. doi: 10.1016/j.heliyon.2018.e00784.
  • Papoulia, J., Y. M. Fahjan, L. Hutchings, and T. Novikova. 2015. PSHA for broad-band strong ground-motion hazards in the Saronikos Gulf, Greece, from Potential Earthquake with synthetic ground motions. Journal of Earthquake Engineering 19 (4): 624–48. doi: 10.1080/13632469.2014.991977.
  • Pezeshk, S., A. Zandieh, and B. Tavakoli. 2011. Hybrid empirical ground-motion prediction equations for Eastern North America using NGA models and updated seismological parameters. Bulletin of the Seismological Society of America 101 (4): 1859–70. doi: 10.1785/0120100144.
  • Pezeshk, S., A. Zandieh, K. W. Campbell, and B. Tavakoli. 2018. Ground-motion prediction equations for central and Eastern North America using the hybrid empirical method and NGA-West2 empirical ground-motion models. Bulletin of the Seismological Society of America 108 (4): 2278–304. doi: 10.1785/0120170179.
  • Rathje, E. M., A. R. Kottke, and M. C. Ozbey. 2005. “Using inverse random vibration theory to develop input Fourier amplitude spectra for use in site response,” Proceedings of 16th International Conference on Soil Mechanics and Geotechnical Engineering, TC4 Earthquake Geotechnical Engineering Satellite Conference, 160–66. Osaka, Japan. DOI: 10.13140/2.1.3695.3920.
  • Rietbrock, A., F. Strasser, and B. Edwards. 2013. A stochastic earthquake ground-motion prediction model for the United Kingdom. Bulletin of the Seismological Society of America 103 (1): 57–77. doi: 10.1785/0120110231.
  • Saragoni, G. R., and G. C. Hart. 1974. Simulation of artificial earthquakes. Earthquake Engineering and Structural Dynamics 2: 249–67. doi: 10.1002/eqe.4290020305.
  • Schulte, S. M., and W. D. Mooney. 2005. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts. Geophysical Journal International 161 (3): 707–21. doi: 10.1111/j.1365-246X.2005.02554.x.
  • Sharma, N., and V. Convertito. 2018. Update, comparison, and interpretation of the ground-motion prediction equation for “The Geysers” geothermal area in the light of new data. Bulletin of the Seismological Society of America 108 (6): 3645–55. doi: 10.1785/0120170350.
  • Stewart, J. P., D. M. Boore, E. Seyhan, and G. M. Atkinson. 2016. NGA-West2 equations for predicting vertical-component PGA, PGV, and 5%-damped PSA from Shallow crustal earthquakes. Earthquake Spectra 32 (2): 1005–31. doi: 10.1193/072114eqs116m.
  • Tavakoli, B., and S. Pezeshk. 2005. Empirical-stochastic ground-motion prediction for Eastern North America. Bulletin of the Seismological Society of America 95 (6): 2283–96. doi: 10.1785/0120050030.
  • Wen, Y. K., K. R. Collins, S. W. Han, and K. J. Elwood. 1996. Dual-level designs of buildings under seismic loads. Structural Safety 18 (2–3): 195–224. doi: 10.1016/0167-4730(96)00011-2.
  • Yang, D., and J. Zhou. 2015. A stochastic model and synthesis for near-fault impulsive ground motions. Earthquake Engineering and Structural Dynamics 44 (2). doi: 10.1002/eqe.2468.
  • Yenier, E., and G. M. Atkinson. 2015. An equivalent point-source model for stochastic simulation of earthquake ground motions in California. Bulletin of the Seismological Society of America 105 (3): 1435–55. doi: 10.1785/0120140254.
  • Zafarani, H., B. Hajimohammadi, and S. M. Jalalalhosseini. 2019. Earthquake hazard in the tehran region based on the characteristic earthquake model. Journal of Earthquake Engineering 23 (9): 1485–511. doi: 10.1080/13632469.2017.1387189.
  • Zandieh, A., and S. Pezeshk. 2010. Investigation of geometrical spreading and quality factor functions in the New Madrid Seismic Zone. Bulletin of the Seismological Society of America 100: 2185–95. doi: 10.1785/0120090209.
  • Zhao, J. X., K. Irikura, J. Zhang, F. Yoshimitsu, P. G. Somerville, A. Asano, Y. Ohno, T. Oouchi, T. Takahashi, and H. Ogawa. 2006. An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of America 96 (3): 914–25. doi: 10.1785/0120050124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.