387
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modeling the Loss of Vibration Energy in Buildings to Elastic-waves Using High-fidelity FE Modeling and Absorbent Exterior Boundaries

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6567-6584 | Received 10 Oct 2020, Accepted 10 Apr 2021, Published online: 20 Jun 2021

References

  • Abell, J. A., N. Orbović, D. B. McCallen, and B. Jeremic. May 2018. Earthquake soil-structure interaction of nuclear power plants, differences in response to 3-D, 3 × 1-D, and 1-D excitations. Earthquake Engineering & Structural Dynamics 47 (6): 1478–95. doi: 10.1002/eqe.3026.
  • ACI Committee 318. 2019. Building code requirements for structural concrete and comentary (318-0519). Detroit, Michigan.
  • Ambrosini, R. D. March 2006. Material damping vs. radiation damping in soil-structure interaction analysis. Computers and Geotechnics 33 (2): 86–92. doi: 10.1016/j.compgeo.2006.03.001.
  • Arboleda-Monsalve, L. G., J. A. Mercado, V. Terzic, and K. R. Mackie. May 2020. Soil–structure interaction effects on seismic performance and earthquake-induced losses in tall buildings. Journal of Geotechnical and Geoenvironmental Engineering 146 (5): 04020028. doi: 10.1061/(ASCE)GT.1943-5606.0002248.
  • ASCE/SEI-7-10. Minimum design loads for buildings structures and other structures. American Society of Civil Engineers. Reston, Virginia
  • Basu, U., and A. K. Chopra. March 2003. Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: Theory and finite-element implementation. Computer Methods in Applied Mechanics and Engineering 192 (11–12): 1337–75. doi: 10.1016/S0045-7825(02)00642-4.
  • Bécache, E., P. Joly, and C. Tsogka. November 2001. Fictitious domains, mixed finite elements and perfectly matched layers for 2-D elastic wave propagation. Journal of Computational Acoustics 9 (3): 1175–201. doi: 10.1142/S0218396X01000966.
  • Bielak, J., K. Loukakis, Y. Hisada, and C. Yoshimura. April 2003. Domain reduction method for three-dimensional earthquake modeling in localized regions, part I: Theory. Bulletin of the Seismological Society of America 93 (2): 817–24. doi: 10.1785/0120010251.
  • Cao, Y., G. P. Mavroeidis, K. C. Meza-Fajardo, and A. S. Papageorgiou. October 2017. Accidental eccentricity in symmetric buildings due to wave passage effects arising from near-fault pulse-like ground motions. Earthquake Engineering & Structural Dynamics 46 (13): 2185–207. doi: 10.1002/eqe.2901.
  • Chacón, M. F., J. C. de la Llera, M. A. Hube, J. Marques, and A. Lemnitzer. 2017. Epistemic uncertainty in the seismic response of RC free-plan buildings. Engineering Structures 141 (April): 687–702. doi: 10.1016/j.engstruct.2017.03.015.
  • Chimamphant, S., and K. Kasai. January 2016. Comparative response and performance of base-isolated and fixed-base structures. Earthquake Engineering & Structural Dynamics 45 (1): 5–27. doi: 10.1002/eqe.2612.
  • Coleman J. L., Bolisetti C., and Whittaker A. S. March 2016. Time-domain soil-structure interaction analysis of nuclear facilities. Nuclear Engineering and Design 298: 264–70. doi: 10.1016/j.nucengdes.2015.08.015.
  • Conti, R., M. Morigi, E. Rovithis, N. Theodoulidis, and C. Karakostas. April 2018. Filtering action of embedded massive foundations: New analytical expressions and evidence from 2 instrumented buildings. Earthquake Engineering & Structural Dynamics 47 (5): 1229–49. doi: 10.1002/eqe.3014.
  • Elgamal, A., L. Yan, Z. Yang, and J. P. Conte. July 2008. Three-dimensional seismic response of bridge-foundation-ground system. Journal of Structural Engineering 134 (7): 1165–76. doi: 10.1061/(ASCE)0733-9445(2008)134:7(1165).
  • Enrique Luco, J. April 1986. On the relation between radiation and scattering problems for foundations embedded in an elastic half-space. Soil Dynamics and Earthquake Engineering 5 (2): 97–101. doi: 10.1016/0267-7261(86)90003-5.
  • Fernando, R.-R. April 2000. Observed and calculated load-settlement relationship in a sandy gravel. Canadian Geotechnical Journal 37 (2): 333–42. doi: 10.1139/t99-109.
  • Gatti, F., S. Touhami, F. Lopez-Caballero, R. Paolucci, D. Clouteau, V. Alves Fernandes, M. Kham, and F. Voldoire. December 2018. Broad-band 3-D earthquake simulation at nuclear site by an all-embracing source-to-structure approach. Soil Dynamics and Earthquake Engineering 115: 263–80. doi: 10.1016/j.soildyn.2018.08.028.
  • Geuzaine, C., and J.-F. Remacle. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering 79 (11): 1309–31. doi: 10.1002/nme.2579.
  • Gičev, V., M. D. Trifunac, and N. Orbović. November 2016a. Two-dimensional translation, rocking, and waves in a building during soil-structure interaction excited by a plane earthquake P-wave pulse. Soil Dynamics and Earthquake Engineering 90: 454–66. doi: 10.1016/j.soildyn.2016.01.006.
  • Gičev, V., M. D. Trifunac, and N. Orbović. September 2016b. Two-dimensional translation, rocking, and waves in a building during soil-structure interaction excited by a plane earthquake SV-wave pulse. Soil Dynamics and Earthquake Engineering 88: 76–91. doi: 10.1016/j.soildyn.2016.05.008.
  • Guendelman, T., M. Guendelman, and J. Lindenberg. 1997. Perfil Bío-sísmico de edificios. In VII Jornadas Chilenas de Sismología e Ingeniería Antisísmica y Primer Congreso Iberoamericano de Ingeniería Sísmica. La Serena, Chile.
  • Housner, G. W. July 1957. Interaction of building and ground during an earthquake. Bulletin of the Seismological Society of America 47 (3): 179–86. doi: 10.1785/BSSA0470030179.
  • Instituto Nacional de Normalización. 2009. NCh433: Earthquake resistant design of buildings (in Spanish). Santiago, Chile.
  • Isbiliroglu, Y., R. Taborda, and J. Bielak. February 2015. Coupled soil-structure interaction effects of building clusters during earthquakes. Earthquake Spectra 31 (1): 463–500. doi: 10.1193/102412EQS315M.
  • Jalali, R. S., and M. D. Trifunac. April 2011. A note on the wave-passage effects in out-of-plane response of long structures to strong earthquake pulses. Soil Dynamics and Earthquake Engineering 31 (4): 640–47. doi: 10.1016/j.soildyn.2010.11.010.
  • Jeong, C., E. E. Seylabi, and E. Taciroglu.June 2013. A time-domain substructuring method for dynamic soil structure interaction analysis of arbitrarily shaped foundation systems on heterogeneous media. In Computing in civil engineering, 346–53. Reston, VA: American Society of Civil Engineers. doi:10.1061/9780784413029.044.
  • Jeremić, B., G. Jie, M. Preisig, and N. Tafazzoli. April 2009. Time domain simulation of soil-foundation-structure interaction in non-uniform soils. Earthquake Engineering & Structural Dynamics 38 (5): 699–718. doi: 10.1002/eqe.896.
  • Jeremić, B., N. Tafazzoli, T. Ancheta, N. Orbović, and A. Blahoianu. December 2013. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations. Nuclear Engineering and Design 265: 85–94. doi: 10.1016/j.nucengdes.2013.07.003.
  • Jia, F., J. Liang, M. I. Todorovska, and M. D. Trifunac. August 2018. Soil-structure system frequency and damping: Estimation from eigenvalues and results for a 2D model in layered half-space. Earthquake Engineering & Structural Dynamics 47 (10): 2055–75. doi: 10.1002/eqe.3055.
  • Kontoe, S., L. Zdravkovic, C. O. Menkiti, and D. M. Potts. January 2012. Seismic response and interaction of complex soil retaining systems. Computers and Geotechnics 39: 17–26. doi: 10.1016/j.compgeo.2011.08.003.
  • Kouroussis, G., O. Verlinden, and C. Conti. July 2011. Finite-dynamic model for infinite media: Corrected solution of viscous boundary efficiency. Journal of Engineering Mechanics 137 (7): 509–11. doi: 10.1061/(ASCE)EM.1943-7889.0000250.
  • Kucukcoban, S., and L. F. Kallivokas. January 2011. Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media. Computer Methods in Applied Mechanics and Engineering 200 (1–4): 57–76. doi: 10.1016/j.cma.2010.07.013.
  • Kuhlemeyer, R. L., and J. Lysmer.May 1973. Finite element method accuracy for wave propagation problems. Journal of Soil Mechanics & Foundations Div 99 (sm5). doi: 10.1061/JSFEAQ.0001885.
  • Luco, J. E. January 1976. Torsional response of structures to obliquely incident seismic sh waves. Earthquake Engineering & Structural Dynamics 4 (3): 207–19. doi: 10.1002/eqe.4290040302.
  • Luco, J. E., and H. L. Wong. 1982. Response of structures to nonvertically incident seismic waves. Bulletin of the Seismological Society of America 72 (1): 275–302.
  • Mckenna, F., G. Fenves, H. Scott, and B. Jeremic. Open system for earthquake engineering simulation (OpenSees), 2000.
  • Mihailo, D., M. I. T., Trifunac, and N. Orbović. December 2015. A note on the motion of a large area on ground surface during passage of synthetic strong motion waves. Soil Dynamics and Earthquake Engineering 79: 59–65. doi: 10.1016/j.soildyn.2015.09.003.
  • Mistry H. K., Lombardi D. August. 2020. Role of SSI on seismic performance of nuclear reactors: A case study for a UK nuclear site. Nuclear Engineering and Design 364: 1–11. doi:10.1016/j.nucengdes.2020.110691.
  • Nakamura, Y. 1989. Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan) 30 (1): 25–33.
  • Ortigosa, P., H. Musante, and I. Kort. 1982. Mechanical properties of the gravel of Santiago. In 1° Congreso Chileno de Ingeniería Geotécnica, Sociedad Chilena de Mecánica de Suelos y Fundaciones, Pontificia Universidad Católica de Chile, Santiago, Chile, 442–54.
  • Ostadan, F., N. Deng, O. Gurbuz, and S. Malushte. 2008. Seismic soil-structure interaction analysis including ground motion incoherency effects. In The 14th World Conference on Earthquake Engineering (14WCEE), Beijing, China.
  • Pastén, C., M. Sáez, S. Ruiz, F. Leyton, J. Salomón, and P. Poli. 2016. Deep characterization of the Santiago Basin using HVSR and cross-correlation of ambient seismic noise. Engineering Geology 201: 57–66. doi: 10.1016/j.enggeo.2015.12.021.
  • Pilz, M., S. Parolai, F. Leyton, J. Campos, and J. Zschau. 2009. A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophysical Journal International 178 (2): 713–28. doi: 10.1111/j.1365-246X.2009.04195.x.
  • Psarropoulos, P. N., T. Tazoh, G. Gazetas, and M. Apostolou. October 2007. Linear and nonlinear valley amplification effects on seismic ground motion. Soils and Foundations 47 (5): 857–71. doi: 10.3208/sandf.47.857.
  • Salas, F. Monitoring and dynamic analysis of a discontinuous pile-supported deep excavation in Satiago Gravel. 2018.
  • Scarfone, R., M. Morigi, and R. Conti. January 2020. Assessment of dynamic soil-structure interaction effects for tall buildings: A 3D numerical approach. Soil Dynamics and Earthquake Engineering 128: 105864. doi: 10.1016/j.soildyn.2019.105864.
  • Sjögreen, B., and N. A. Petersson. July 2012. A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation. Journal of Scientific Computing 52 (1): 17–48. doi: 10.1007/s10915-011-9531-1.
  • Solberg, J. M., Q. Hossain, and G. Mseis. August 2016. Nonlinear time-domain soil-structure interaction analysis of embedded reactor structures subjected to earthquake loads. Nuclear Engineering and Design 304: 100–24. doi: 10.1016/j.nucengdes.2016.04.026.
  • Stewart, J. P., G. L. Fenves, and B. Raymond. January 1999. Seed. seismic soil-structure interaction in buildings. I: analytical methods. Journal of Geotechnical and Geoenvironmental Engineering 125 (1): 26–37. doi: 10.1061/(ASCE)1090-0241(1999)125:1(26).
  • Tripe, R., S. Kontoe, and T. K. C. Wong. July 2013. Slope topography effects on ground motion in the presence of deep soil layers. Soil Dynamics and Earthquake Engineering 50: 72–84. doi: 10.1016/j.soildyn.2013.02.011.
  • Van Nguyen, D., D. Kim, and D. D. Nguyen. August 2020. Nonlinear seismic soil-structure interaction analysis of nuclear reactor building considering the effect of earthquake frequency content. Structures 26: 901–14. doi: 10.1016/j.istruc.2020.05.013.
  • Watanabe, K., F. Pisanò, and J. Boris. jul 2017. Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media. Engineering with Computers 33 (3): 519–45. doi: 10.1007/s00366-016-0488-4.
  • Weissman, K., and J. H. Prevost. 1988. A study of radiation damping and soil-structure interaction effects in the centrifuge. Buffalo, New York: National Center for Earthquake Engineering Research.
  • Wolf, J. P., and C. Song. dec 1996. To radiate or not to radiate. Earthquake Engineering & Structural Dynamics 25 (12): 1421–32. doi: 10.1002/(SICI)1096-9845(199612)25:12<1421::AID-EQE628>3.0.CO;2-W.
  • Xinzheng, L., Y. Tian, C. Sun, and S. Zhang. 2019. Development and application of a highperformance triangular shell element and an explicit algorithm in OpenSees for strongly nonlinear analysis. CMES - Computer Modeling in Engineering and Sciences 120 (3): 561–82. doi: 10.32604/cmes.2019.04770.
  • Yoshimura, C., J. Bielak, Y. Hisada, and F. Antonio. apr 2003. Domain reduction method for three-dimensional earthquake modeling in localized regions, part II: Verification and applications. Bulletin of the Seismological Society of America 93 (2): 825–40. doi: 10.1785/0120010252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.