144
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on Seismic Response of an Integral Abutment: Steel H-Pile Structure under Quasi-Static Cyclic Loads

ORCID Icon, , , & ORCID Icon
Pages 2358-2380 | Received 07 Aug 2021, Accepted 16 Jul 2022, Published online: 26 Aug 2022

References

  • AASHTO. 2012. LRFD bridge design specifications. Washington DC: American Association of State Highway and Transportation Officials.
  • Arsoy, S. 2000. Experimental and analytical investigations of piles and abutments of integral bridges. Blacksburg, Virginia: Virginia Polytechnic Institute and State University.
  • Bao-chun, C., Z. Yi-zhou, H. Fu-yun, and B. Briseghella. 2019. Jointless bridges. Beijing: China Communications Press.
  • Choi, B. H., L. B. Moreno, C. Lim, D. Nguyen, and T. Lee. 2019. Seismic performance evaluation of a fully integral concrete bridge with end-restraining abutments. Advances in Civil Engineering 2019: 12. https://doi.org/10.1155/2019/6873096.
  • Crouse, C. B., B. Hushmand, and G. R. Martin. 1987. Dynamic soil-structure interaction of a single-span bridge. Earthquake Engineering & Structural Dynamics 15: 711–29. doi:10.1002/eqe.4290150605.
  • Dicleli, M. 2005. Integral abutment-backfill behavior on sand soil—pushover analysis approach. Journal of Bridge Engineering 10 (3): 354–64. doi:10.1061/(asce)1084-0702(2005)10:3(354).
  • Easazadeh Far, N., and M. Barghian. 2014. Safety identifying of integral abutment bridges under seismic and thermal loads. The Scientific World Journal 2014 (2014): 1–12. doi:10.1155/2014/757608.
  • Erhan, S., and M. Dicleli. 2014. Effect of dynamic soil-bridge interaction modeling assumptions on the calculated seismic response of integral bridges. Soil Dynamics and Earthquake Engineering 66: 42–55. doi:10.1016/j.soildyn.2014.06.033.
  • Erhan, S., and M. Dicleli. 2015. Comparative assessment of the seismic performance of integral and conventional bridges with respect to the differences at the abutments. Bulletin of Earthquake Engineering 13 (2): 653–77. doi:10.1007/s10518-014-9635-8.
  • Far, N. E., S. Maleki, and M. Barghian. 2015. Design of integral abutment bridges for combined thermal and seismic loads. Earthquakes and Structures 9 (2): 415–30. doi:10.12989/eas.2015.9.2.415.
  • Farahani, R. V. 2010. Seismic analysis of integral abutment bridges. Knoxville, Tennessee: University of Tennessee.
  • Franchin, P., and P. Emilio. 2013. Performance-based seismic design of integral abutment bridges. Bulletin of Earthquake Engineering. doi:10.1007/s10518-013-9552-2.
  • Goel, R. K. 1997. Earthquake characteristics of bridges with integral abutments. Journal of Structural Engineering 123 (11): 1435–43. doi:10.1061/(asce)0733-9445(1997)123:11(1435).
  • Guo, W. Q., X. Y. Luo, Y. F. Tang, R. H. Fu, and A. Javanmardi. 2022. Study on mechanical properties of simply supported girder bridge after jointless. Journal of Physics: Conference Series 2158 (1): 012023. doi:10.1088/1742-6596/2158/1/012023.
  • Guo, P. X., Y. Xiao, and S. K. Kunnath. 2014. Performance of laterally loaded H-piles in sand. Soil Dynamics and Earthquake Engineering 67: 316–25. doi:10.1016/j.soildyn.2014.10.007.
  • Huang, F., H. Qian, Y. Zhuang, and C. Fu. 2017. Experimental study on the dynamic response of PHC pipe-piles in liquefiable soil. Journal of Testing and Evaluation 45: 230–41. doi:10.1520/JTE20160122.
  • Huang, F., Y. Shan, G. Chen, Y. Lin, H. Tabatabai, and B. Briseghella. 2020a. Experiment on interaction of abutment, steel H-pile and soil in integral abutment jointless bridges. Applied Sciences 14: 1358. doi:10.3390/app10041358.
  • Huang, F., Y. Shan, A. Javanmardi, X. Luo, and B. Chen. 2020b. Seismic performance of various piles considering soil – pile interaction under lateral cycle loads for integral abutment jointless bridges (IAJBs). Applied Sciences 10: 3406. doi:10.3390/app10103406.
  • Huang, F., S. W. Wu, X. Y. Luo, B. C. Chen, and Y. Lin. 2018. Pseudo-static test on mechanic behavior of PHC piles with soil-pile interaction. Engineering Structures 171: 992–1006. doi:10.1016/j.engstruct.2018.01.060.
  • Industry Standard of the Republic of Chinese Names. 2008. JGJ 94-2008 technical specification for building pile foundation, Beijing.
  • Itani, A. M. and G. Pekan. 2011. Seismic performance of steel plate girder bridges with integral abutments (No. FHWA-HIF-11-043). United States. Federal Highway Administration. Office of Bridge Technology.
  • Karalar, M., and D. Murat. 2018. Fatigue in jointless bridge H-piles under axial load and thermal movements. Journal of Constructional Steel Research 147: 504–22. doi:10.1016/j.jcsr.2018.05.006.
  • Kimura, Y., T. Goto, M. Matoba, and S. Tamura. 2016. Dynamic collapse mechanism and ultimate strength for circular tube pile based on centrifuge tests of superstructure-pile-liquefied soil system. Journal of Structural and Construction Engineering (Transactions of AIJ) 81: 2079–89. doi:10.3130/aijs.81.2079.
  • Kimura, Y., Y. Kishino, and S. Tamura. 2015. Dynamic flexural buckling for circular tube piles based on centrifuge tests of superstructure-pile-liquefied soil system. Journal of Structural and Construction Engineering (Transactions of AIJ) 80: 1707–16. doi:10.3130/aijs.80.1707.
  • Kimura, Y., M. Matoba, T. Goto, and S. Tamura. 2017. Dynamic ultimate strength for circular tube pile stiffened at pile head based on centrifuge tests of superstructure-pile-liquefied soil system. Journal of Structural and Construction Engineering (Transactions of AIJ) 82 (738): 1221–31. doi:10.3130/aijs.82.1221.
  • Kimura, Y., M. Matoba, and S. Tamura. 2021. Collapse mechanism of steel piles in liquefied soil based on centrifugal tests of superstructure-pile foundation and liquefied soil system with high height-to-width aspect ratio of building. Journal of Structural and Construction Engineering (Transactions of AIJ) 86: 53–63. doi:10.3130/aijs.86.53.
  • Kozak, D. L., J. M. Lafave, and L. A. Fahnestock. 2018. Seismic modeling of integral abutment bridges in Illinois. Engineering Structures 165: 170–83. doi:10.1016/j.engstruct.2018.02.088.
  • Lou, M. L., W. J. Wang, T. Zhu, and H. C. Mang. 2000. Soil lateral boundary effect in shaking table model test of soil-structure system. Earthquake Engineering & Structural Dynamics 20: 30–36.
  • M. of H. and U.-R.D. of the P.R. of China. 2015. Specification for seismic test of buildings.
  • Matoba, M., Y. Kimura, and S. Tamura. 2021. Cumulative damage evaluation for collapse of steel pile in liquefied soil subjected to multiple earthquakes based on centrifuge tests of superstructure-pile-liquefied soil system. Journal of Structural and Construction Engineering (Transactions of AIJ) 86: 749–60. doi:10.3130/aijs.86.749.
  • Ministry of Transport of the People’s Republic of China. 2015. General specifications for design of highway bridges and culverts
  • Mitoulis, S. A. 2020. Challenges and opportunities for the application of integral abutment bridges in earthquake-prone areas : A review. Soil Dynamics and Earthquake Engineering 135: 106–83. doi:10.1016/j.soildyn.2020.106183.
  • Mohabeddine, A., Y. W. Koudri, J. A. F. O. Correia, and J. M. Castro. 2021. Rotation capacity of steel members for the seismic assessment of steel buildings. Engineering Structures 244: 112760. doi:10.1016/j.engstruct.2021.112760.
  • Naji, M., A. Akbar, and A. Asghar. 2020. A review : Study of integral abutment bridge with consideration of soil-structure interaction. Latin American Journal of Solids and Structures 17: 1–27. doi:10.1590/1679-78255869.
  • Ni Choine, M., A. J. O’Connor, J. E. Padgett, M. N. Choinea, A. J. O’Connor, J. E. Padgett, M. Ni Choine, A. J. O’Connor, and J. E. Padgett. 2015. Comparison between the seismic performance of integral and jointed concrete bridges. Journal of Earthquake Engineering 19: 172–91. doi:10.1080/13632469.2014.946163.
  • Park, R. 1989. Structural assemblages from laboratory testing. Bulletin of the  New Zealand National Society for Earthquake Engineering 22: 155–66.
  • Salman, N. N., and M. A. Issa. 2019. Displacement capacities of H-piles in integral abutment bridges. Journal of Bridge Engineering 24. doi:10.1061/(asce)be.1943-5592.0001482.
  • Spyrakos, C., and G. Loannidis. 2003. Seismic behavior of a post-tensioned integral bridge including Soil-Structure Interaction(SSI). Soil Dynamics and Earthquake Engineering 23: 53–63. doi:10.1016/S0267-7261(02)00150-1.
  • Suzuki, A., Y. Kimura, and K. Kasai. 2018. Estimation of plastic deformation capacity for I- shaped beams with local buckling under compressive and tensile forces. Japanese Architecture Review 2: 26–41. doi:10.1002/2475-8876.12066.
  • Suzuki, A., Y. Kimura, and K. Kasai. 2020. Rotation capacity of I-shaped beams under alternating axial forces based on buckling-mode transitions. Journal of Structural Engineering 146 (6): 04020089. doi:10.1061/(asce)st.1943-541x.0002623.
  • Vasheghani-farahani, R., Q. Zhao, and E. G. Burdette. 2010. Seismic analysis of integral abutment bridge in Tennessee, including soil – structure interaction. Transportation Research Record: Journal of the Transportation Research Board 2201 (1): 70–79. doi:10.3141/2201-09.
  • Wilson, J. C., and B. S. Tan. 1990. Bridge abutments: Formulation of simple model for earthquake response analysis. Journal of Engineering Mechanics 116: 1828–37. doi:10.1061/(ASCE)0733-9399(1990)116:8(1828).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.