234
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterizing Nonlinear Effects in Vertical Site Response of Dry Soils Using KiK-Net Data

ORCID Icon & ORCID Icon
Pages 2570-2586 | Received 16 Dec 2021, Accepted 26 Jul 2022, Published online: 14 Sep 2022

References

  • Allen, N. F., R. D. Woods, and F. E. Richart. 1980. Fluid wave propagation in saturated and nearly saturated sands. Journal of the Geotechnical Engineering Division 106 (3): 235–254‏. doi: 10.1061/AJGEB6.0000931.
  • Bahrampouri, M., A. Rodriguez-Marek, S. Shahi, and H. Dawood. 2021. An updated database for ground motion parameters for KiK-net records. Earthquake Spectra 37 (1): 505–522‏. doi: 10.1177/8755293020952447.
  • Beresnev, I. A., A. M. Nightengale, and W. J. Silva. 2002. Properties of vertical ground motions. Bulletin of the Seismological Society of America 92 (8): 3152–3164‏. doi: 10.1785/0120020009.
  • Beresnev, I. A., and K. L. Wen. 1996. Nonlinear soil response—A reality? Bulletin of the Seismological Society of America 86 (6): 1964–78.
  • Bloomfield, P. 2004. Fourier analysis of time series: An introduction. Canada: John Wiley & Sons‏.
  • Bonilla, L. F., P. Guéguen, and C. Gélis. 2021. Contribution of K-net and KiK-net data to the monitoring of nonlinear properties of the shallow crust.
  • Boore, D. M. 2005. On pads and filters: Processing strong-motion data. Bulletin of the Seismological Society of America 95 (2): 745–750‏. doi: 10.1785/0120040160.
  • Bozorgnia, Y., M. Niazi, and K. W. Campbell. 1995. Characteristics of free-field vertical ground motion during the Northridge earthquake. Earthquake Spectra 11 (4): 515–525‏. doi: 10.1193/1.1585825.
  • Bradley, B. A., and M. Cubrinovski. 2011. Near-source strong ground motions observed in the 22 February 2011 christchurch earthquake. Seismological Research Letters 82 (6): 853–865‏. doi: 10.1785/gssrl.82.6.853.
  • Cadet, H., P. Y. Bard, A. M. Duval, and E. Bertrand. 2012. Site effect assessment using KiK-net data: Part 2—site amplification prediction equation based on f 0 and Vsz. Bulletin of Earthquake Engineering 10 (2): 451–89. doi: 10.1007/s10518-011-9324-9.
  • Castro-Cruz, D., J. Regnier, E. Bertrand, and F. Courboulex. 2020. A new parameter to empirically describe and predict the non-linear seismic response of sites derived from the analysis of KiK-Net database. Soil Dynamics and Earthquake Engineering 128: 105833. doi: 10.1016/j.soildyn.2019.105833.
  • Crotwell, H. P., T. J. Owens, and J. Ritsema. 1999. The TauP Toolkit: Flexible seismic travel-time and ray-path utilities. Seismological Research Letters 70 (2): 154–160‏. doi: 10.1785/gssrl.70.2.154.
  • Darendeli, M. B. 2001. Development of a new family of normalized modulus reduction and material damping curves. The University of Texas at Austin.
  • Dawood, H. M., A. Rodriguez-Marek, J. Bayless, C. Goulet, and E. Thompson. 2016. A flatfile for the KiK-net database processed using an automated protocol. Earthquake Spectra 32 (2): 1281–1302‏. doi: 10.1193/071214eqs106.
  • Derras, B., P. Y. Bard, J. Régnier, and H. Cadet. 2020. Non-linear modulation of site response: Sensitivity to various surface ground-motion intensity measures and site-condition proxies using a neural network approach. Engineering Geology 269: 105500‏. doi: 10.1016/j.enggeo.2020.105500.
  • Du, W. 2018. Effects of directionality and vertical component of ground motions on seismic slope displacements in Newmark sliding-block analysis. Engineering Geology 29: 13–21. doi: 10.1016/j.enggeo.2018.03.012.
  • EPRI. 1993. Guidelines for determining design basis ground motions. Electric Power Research Institute. Report EPRI Tr-102293.
  • Frid, M., and R. Kamai. 2020. An analytical approach for estimating the spectral P/S ratio within ground motions. Computers and Geotechnics 119: 103379‏. doi: 10.1016/j.compgeo.2019.103379.
  • Guéguen, P., L. F. Bonilla, and J. Douglas. 2019. Comparison of soil nonlinearity (in situ stress–strain relation and g/gmax reduction) observed in strong‐motion databases and modeled in ground‐motion prediction equationscomparison of soil nonlinearity observed in strong‐motion databases and modeled in GMPEs. Bulletin of the Seismological Society of America 109 (1): 178–186‏.
  • Gülerce, Z., R. Kamai, N. A. Abrahamson, and W. J. Silva. 2017. Ground motion prediction equations for the vertical ground motion component based on the NGA-W2 database. Earthquake Spectra 33 (2): 499–528‏. doi: 10.1193/121814EQS213M.
  • Han, B., Z. Yang, L. Zdravkovic, and S. Kontoe. 2015. Non-linearity of gravelly soils under seismic compressional deformation based on KiK-net downhole array observations. Geotechnique Letters 5 (4): 287–293‏. doi: 10.1680/jgele.15.00130.
  • Hashash, Y. M., C. Phillips, and D. R. Groholski. 2010. Recent advances in non-linear site response analysis. 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics ( No. 4).‏ May. San Diego, California.
  • Idriss, I. M. 1990. Response of soft soil sites during earthquakes. Proceedings of HB Seed Memorial Symposium, vol. 2, 273–89. Vancouver, Canada.‏
  • Ji, C., A. Cabas, L. F. Bonilla, and C. Gelis. 2021. Effects of nonlinear soil behavior on kappa (κ): observations from the KiK net database. Bulletin of the Seismological Society of America‏ 111 (4): 2138–57. doi: 10.1785/0120200286.
  • Kaklamanos, J., L. G. Baise, E. M. Thompson, and L. Dorfmann. 2015. Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites. Soil Dynamics and Earthquake Engineering 69: 207–19. doi: 10.1016/j.soildyn.2014.10.016.
  • Kaklamanos, J., and B. A. Bradley. 2018. Challenges in predicting seismic site response with 1D analyses: Conclusions from 114 KiK net vertical seismometer arrays. Bulletin of the Seismological Society of America 108 (5A): 2816–2838‏. doi: 10.1785/0120180062.
  • Kalkan, E. 2016. An automatic P‐phase arrival‐time picker. Bulletin of the Seismological Society of America 106 (3): 971–986‏. doi: 10.1785/0120150111.
  • Kamai, R., N. A. Abrahamson, and W. J. Silva. 2014. Nonlinear horizontal site amplification for constraining the NGA-West2 GMPEs. Earthquake Spectra 30 (3): 1223–1240‏. doi: 10.1193/070113EQS187M.
  • Kishida, T., and C. C. Tsai. 2021. Wave velocities depending on shear strain, directionality, and excess pore water pressure from wildlife liquefaction array. Bulletin of Earthquake Engineering 19 (6): 2371–88. doi: 10.1007/s10518-021-01074-4.
  • Konno, K., and T. Ohmachi. 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America 88 (1): 228–241‏. doi: 10.1785/BSSA0880010228.
  • Kunnath, S. K., E. Erduran, Y. H. Chai, and M. Yashinsky. 2008. Effect of near-fault vertical ground motions on seismic response of highway overcrossings. Journal of Bridge Engineering 13 (3): 282–290‏. doi: 10.1061/(ASCE)1084-0702(2008)13:3(282).
  • Liu, H. W., and C. C. Tsai. 2018. Site effect of vertical motion-amplification behavior observed from downhole arrays. Journal of GeoEngineering 13 (1): 39–48‏.
  • Nayak, C. B. 2021. A state-of-the-art review of vertical ground motion (VGM) characteristics, effects and provisions. Innovative Infrastructure Solutions 6 (2): 1–18‏. doi: 10.1007/s41062-021-00491-3.
  • Newmark, N. M., and W. J. Hall. 1982. Earthquake spectra and designVolume 3 of Engineering monographs on earthquake criteria, structural design, and strong motion records. Earthquake Engineering Research Inst.
  • Oth, A., D. Bindi, S. Parolai, and D. Di Giacomo. 2011. Spectral analysis of K-NET and KiK-net data in Japan, part II: On attenuation characteristics, source spectra, and site response of borehole and surface stations. Bulletin of the Seismological Society of America 101 (2): 667–687‏. doi: 10.1785/0120100135.
  • Papazoglou, A. J., and A. S. Elnashai. 1996. Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Engineering & Structural Dynamics 25 (10): 1109–1137‏. doi: 10.1002/(SICI)1096-9845(199610)25:10<1109::AID-EQE604>3.0.CO;2-0.
  • Pilz, M., and F. Cotton. 2019. Does the one-dimensional assumption hold for site response analysis? A study of seismic site responses and implication for ground motion assessment using KiK-Net strong-motion data. Earthquake Spectra 35 (2): 883–905‏. doi: 10.1193/050718EQS113M.
  • Qin, Y., H. Tang, Q. Deng, X. Yin, and D. Wang. 2019. Regional seismic slope assessment improvements considering slope aspect and vertical ground motion. Engineering Geology 259 (4). doi: 10.1016/j.enggeo.2019.105148.
  • Ramadan, F., C. Smerzini, G. Lanzano, and F. Pacor. 2021. An empirical model for the vertical‐to‐horizontal spectral ratios for Italy. Earthquake Engineering & Structural Dynamics 50 (15): 4121–4141‏. doi: 10.1002/eqe.3548.
  • Rathje, E. M., A. R. Kottke, and W. L. Trent. 2010. Influence of input motion and site property variabilities on seismic site response analysis. Journal of Geotechnical and Geoenvironmental Engineering 136 (4): 607–19. doi: 10.1061/(ASCE)GT.1943-5606.0000255.
  • Seyhan, E., and J. P. Stewart. 2014. Semi-empirical nonlinear site amplification from NGA-West2 data and simulations. Earthquake Spectra 30 (3): 1241–56. doi: 10.1193/063013EQS181M.
  • Shi, Y., S. Y. Wang, K. Cheng, and Y. Miao. 2020. In situ characterization of nonlinear soil behavior of vertical ground motion using KiK-net data. Bulletin of Earthquake Engineering 18 (10): 4605–27. doi: 10.1007/s10518-020-00893-1.
  • Stewart, J. P., D. M. Boore, E. Seyhan, and G. M. Atkinson. 2016. NGA-West2 equations for predicting vertical-component PGA, PGV, and 5%-damped PSA from shallow crustal earthquakes. Earthquake Spectra 32 (2): 1005–31. doi: 10.1193/072114eqs116m.
  • Thompson, E. M., L. G. Baise, Y. Tanaka, and R. E. Kayen. 2012. A taxonomy of site response complexity. Soil Dynamics and Earthquake Engineering 41: 32–43. doi: 10.1016/j.soildyn.2012.04.005.
  • Tsai, C. C., and H. W. Liu. 2017. Site response analysis of vertical ground motion in consideration of soil nonlinearity. Soil Dynamics and Earthquake Engineering 102: 124–36. doi: 10.1016/j.soildyn.2017.08.024.
  • Tsai, C. C., H. W. Liu, and D. Asimaki. 2022. Predicting V p and constrained modulus reduction curve based on V s and shear modulus reduction curve in accordance with poroelastic theory. Géotechnique 1–12. doi: 10.1680/jgeot.21.00143.
  • Vucetic, M., and R. Dobry. 1991. Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering 117 (1): 89–107. doi: 10.1061/(ASCE)0733-9410(1991)117:1(89).
  • Yang, J., and X. R. Yan. 2009a. Site response to multi-directional earthquake loading: A practical procedure. Soil Dynamics and Earthquake Engineering 29 (4): 710–21. doi: 10.1016/j.soildyn.2008.07.008.
  • Yang, J., and X. R. Yan. 2009b. Factors affecting site response to multi-directional earthquake loading. Engineering Geology 107 (3–4): 77–87. doi: 10.1016/j.enggeo.2009.04.002.
  • Zolfaghari, M. R., and A. Darzi. 2019. Ground-motion models for predicting vertical components of PGA, PGV and 5%-damped spectral acceleration (0.01–10 s) in Iran. Bulletin of Earthquake Engineering 17 (7): 3615–35. doi: 10.1007/s10518-019-00623-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.