199
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Full-Scale Static Loading and Free-Vibration Tests of a Real Bridge with Friction Pendulum Bearing System (FPS) and Design Parameter Estimation

ORCID Icon, , , , &
Pages 3827-3852 | Received 14 Jun 2022, Accepted 19 Nov 2022, Published online: 07 Dec 2022

References

  • Abe, M., J. Yoshida, and Y. Fujino. 2004. Multiaxial behaviors of laminated rubber bearings and their modeling. I: Experimental study. Journal of Structural Engineering 130 (8):1119–32. doi:10.1061/(ASCE)0733-9445(2004)130:8(1119).
  • Athanasiou, A., N. D. Oliveto, and F. C. Ponzo. 2020. Identification of first and second order models for the superstructure of base-isolated buildings using free vibration tests: a case study. Soil Dynamics and Earthquake Engineering 135:106178. doi:10.1016/j.soildyn.2020.106178.
  • Bixio, A. R., M. Dolce, D. Nigro, F. C. Ponzo, F. Braga, and M. Nicoletti. 2001. Repeatable dynamic release tests on a base-isolated building. Journal of Earthquake Engineering 5 (3):369–93. doi:10.1080/13632460109350398.
  • Braga, F., M. Faggella, R. Gigliotti, and M. Laterza. 2005. Nonlinear dynamic response of HDRB and hybrid HDRB-friction sliders base isolation systems. Bulletin of Earthquake Engineering 3 (3):333–53. doi:10.1007/s10518-005-1242-2.
  • Braga, F., and M. Laterza. 2004. Field testing of low-rise base isolated building. Engineering Structures 26 (11):1599–610. doi:10.1016/j.engstruct.2004.06.002.
  • Chang, C. M., and B. F. Spencer Jr. 2010. Active base isolation of buildings subjected to seismic excitations. Earthquake Engineering & Structural Dynamics 39 (13):1493–512. doi:10.1002/eqe.1040.
  • Constantinou, M., A. Mokha, and A. Reinhorn. 1990. Teflon bearings in base isolation. II: Modeling. Journal of Structural Engineering 116 (2):455–74. doi:10.1061/(ASCE)0733-9445(1990)116:2(455).
  • Constantinou, M. C., P. Tsopelas, A. Kasalanati, and E. D. Wolff. 1999. Property modification factors for seismic isolation bearings. Buffalo, NY: Multidisciplinary Center for Earthquake Engineering Research.
  • Constantinou, M. C., P. Tsopelas, Y. S. Kim, and S. Okamoto. 1993. NCEER-Taisei coporation research program on sliding seismic isolation system for bridges and analytical study of a friction pendulum system (FPS). Report No NCEER-93-0020, National Center for Earthquake Engineering Research.
  • Dang, J., T. Higashide, A. Igarashi, Y. Adachi, and T. Hayashi. 2015. Dynamic analysis to investigate the effect of aging deterioration of lead rubber bearings on the seismic performance of bridges. Journal of Japan Society of Civil Engineers, Ser: A1 (Structural Engineering & Earthquake Engineering (SE/EE)) 71 (4):I__713–_724. doi:10.2208/jscejseee.71.I_713.
  • Dicleli, M. U. R. A. T., and M. Y. Mansour. 2003. Seismic retrofitting of highway bridges in illinois using friction pendulum seismic isolation bearings and modeling procedures. Engineering Structures 25 (9):1139–56. doi:10.1016/S0141-0296(03)00062-2.
  • Eröz, M., and R. DesRoches. 2008. Bridge seismic response as a function of the friction pendulum system (FPS) modeling assumptions. Engineering Structures 30 (11):3204–12. doi:10.1016/j.engstruct.2008.04.032.
  • Eröz, M., and R. DesRoches. 2013. The influence of design parameters on the response of bridges seismically isolated with the friction pendulum system (FPS). Engineering Structures 56:585–99. doi:10.1016/j.engstruct.2013.05.020.
  • Fenz, D. M., and M. C. Constantinou. 2008. Spherical sliding isolation bearings with adaptive behavior: Experimental verification. Earthquake Engineering & Structural Dynamics 37 (2):185–205. doi:10.1002/eqe.750.
  • Fenz, D. M., and M. C. Constantinou. 2008a. Mechanical behavior of multi-spherical sliding bearings. MCEER-08-0007.
  • Fenz, D. M., and M. C. Constantinou. 2008b. Spherical sliding isolation bearings with adaptive behavior: Theory. Earthquake Engineering & Structural Dynamics 37 (2):163–83. doi:10.1002/eqe.751.
  • Ferrotto, M. F., P. G. Asteris, and L. Cavaleri. 2022. Strategies of identification of a base-isolated hospital building by coupled quasi-static and snap-back tests. Journal of Earthquake Engineering 26 (8):4172–200. doi:10.1080/13632469.2020.1824877.
  • Ferrotto, M. F., L. Cavaleri, F. Di Trapani, and P. Castaldo. 2019. Full scale tests of the base-isolation system for an emergency hospital. In 7th international conference on computational methods in structural dynamics and earthquake engineering methods in structural dynamics and earthquake engineering (COMPDYN 2019), Crete, Greece, 24–26. doi:10.7712/120119.7054.19788.
  • Gandelli, E., V. Q. Mattia Penati, G. Lomiento, E. Miglio, and G. M. Benzoni. 2019. A novel opensees element for single curved surface sliding isolators. Soil Dynamics and Earthquake Engineering 119:433–53. doi:10.1016/j.soildyn.2018.01.044.
  • Gandelli, E., and V. Quaglini. 2020. Effect of the static coefficient of friction of curved surface sliders on the response of an isolated building. Journal of Earthquake Engineering 24 (9):1361–89. doi:10.1080/13632469.2018.1467353.
  • Grant, D. N., G. L. Fenves, and A. S. Whittaker. 2004. Bidirectional modelling of high-damping rubber bearings. Journal of Earthquake Engineering 8 (spec01):161–85. doi:10.1080/13632460409350524.
  • Harvey, P. S., Jr, and K. C. Kelly. 2016. A review of rolling-type seismic isolation: Historical development and future directions. Engineering Structures 125:521–31. doi:10.1016/j.engstruct.2016.07.031.
  • Harvey, P. S., Jr, G. Zéhil, and H. P. Gavin. 2014. Experimental validation of a simplified model for rolling isolation systems. Earthquake Engineering & Structural Dynamics 43 (7):1067–88. doi:10.1002/eqe.2387.
  • Huang, W. H., G. L. Fenves, A. S. Whittaker, and S. A. Mahin. 2000. Characterization of seismic isolation bearings for bridges from bi-directional testing. In 12th World Conference on Earthquake Engineering (2047), Auckland, New Zealand, 2–9.
  • Iemura, H., T. Taghikhany, and S. K. Jain. 2007. Optimum design of resilient sliding isolation system for seismic protection of equipments. Bulletin of Earthquake Engineering 5 (1):85–103. doi:10.1007/s10518-006-9010-5.
  • Iemura, H., T. Taghikhany, Y. Takahashi, and S. K. Jain. 2005. Effect of variation of normal force on seismic performance of resilient sliding isolation systems in highway bridges. Earthquake Engineering & Structural Dynamics 34 (15):1777–97. doi:10.1002/eqe.505.
  • Izuno, K., F. Hakamada, and I. Nakamra. 2000. Integrated sliding bearings to reduce seismic response of bridges. Doboku Gakkai Ronbunshu 2000 (654):233–44.
  • JRA. 2017. Design specification for highway bridges, part V seismic design. Tokyo, Japan: Maruzen.
  • Kawashima, K., and S. Unjoh. 1997. The damage of highway bridges in the 1995 Hyogo-Ken Nanbu earthquake and its impact on Japanese seismic design. Journal of Earthquake Engineering 1 (3):505–41. doi:10.1080/13632469708962376.
  • Lomiento, G., N. Bonessio, and G. Benzoni. 2013. Friction model for sliding bearings under seismic excitation. Journal of Earthquake Engineering 17 (8):1162–91. doi:10.1080/13632469.2013.814611.
  • Matsuda, T., A. Igarashi, A. Furukawa, H. Ouchi, H. Uno, and H. Matsuda. 2013. Effect of inter-component phase difference in bi-directional seismic ground motion input to dynamic response of ICSS. Journal of Japan Society of Civil Engineers, Ser: A1 (Structural Engineering & Earthquake Engineering (SE/EE)) 69 (4):I__688–_702. doi:10.2208/jscejseee.69.I_688.
  • Mokha, A. S., C. C. Michalakis, and M. R. Andrei. 1990. Experimental study and analytical prediction of earthquake response of a sliding isolation system with a spherical surface. Buffalo, NY: MCEER: Earthquake Engineering to Extreme Events University at Buffalo. https://www.buffalo.edu/mceer/catalog.host.html/content/shared/www/mceer/publications/NCEER-90-0020.detail.html
  • Moroni, M. O., M. Sarrazin, and R. Boroschek. 1998. Experiments on a base-isolated building in Santiago, Chile. Engineering Structures 20 (8):720–25. doi:10.1016/S0141-0296(97)00086-2.
  • Mosqueda, G., A. S. Whittaker, and G. L. Fenves. 2004. Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation. Journal of Structural Engineering 130 (3):433–42. doi:10.1061/(ASCE)0733-9445(2004)130:3(433).
  • Murakoshi, Y., A. Igarashi, J. Dang, and T. Ito. 2012. Bidirectional experimental hybrid simulations of elastomeric isolation bearings for validation of hysteretic modeling. In 15th World Conference on Earthquake Engineering-15WCEE, Lisbon, Portugal, Paper ID. Vol. 2835, 24–28.
  • Nagarajaiah, S., M. C. Constantinou, and A. M. Reinhorn. 1989. Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D–BASIS). Buffalo, NY: National Center for Earthquake Engineering Research. https://www.buffalo.edu/mceer/catalog.host.html/content/shared/www/mceer/publications/NCEER-89-0019.detail.html
  • Nagarajaiah, S., A. M. Reinhorn, and M. C. Constantinou. 1991. Nonlinear dynamic analysis of 3-D-base-isolated structures. Journal of Structural Engineering 117 (7):2035–54. doi:10.1061/(ASCE)0733-9445(1991)117:7(2035).
  • Oliveto, N. D., G. Scalia, and G. Oliveto. 2010. Time domain identification of hybrid base isolation systems using free vibration tests. Earthquake Engineering & Structural Dynamics 39 (9):1015–38. doi:10.1002/eqe.984.
  • Pranesh, M., and R. Sinha. 2000. VFPI: an isolation device for aseismic design. Earthquake Engineering & Structural Dynamics 29 (5):603–27. doi:10.1002/(SICI)1096-9845(200005)29:5<603:AID-EQE927>3.0.CO;2-W.
  • Quaglini, V., E. Gandelli, P. Dubini, and S. Cattaneo. 2019. Formulation of a novel opensees element for FPS bearings with enhanced friction model. In COMPDYN 2019, 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece, 1–20. doi:10.7712/120119.7139.18530.
  • Robson, B. N., and I. E. Harik. 1998. Pullback testing of seismically isolated P/C I-girder bridge. Journal of Structural Engineering 124 (8):930–37. doi:10.1061/(ASCE)0733-9445(1998)124:8(930).
  • Simon, D. 2006. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons.
  • Tsai, M. H., W. Si-Yi, K. C. Chang, and G. C. Lee. 2007. Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings. Engineering Structures 29 (5):694–702. doi:10.1016/j.engstruct.2006.05.025.
  • Tsopelas, P., M. C. Constantinou, Y. S. Kim, and S. Okamoto. 1996. Experimental study of FPS system in bridge seismic isolation. Earthquake Engineering & Structural Dynamics 25 (1):65–78. doi:10.1002/(SICI)1096-9845(199601)25:1<65:AID-EQE536>3.0.CO;2-A.
  • Tsopelas, P. C., C. C. Michalakis, and M. R. Andrei 1994. 3 D-BASIS-ME: computer program for nonlinear dynamic analysis of seismically isolated single and multiple structures and liquid storage tanks. Buffalo, NY: MCEER: Earthquake Engineering to Extreme Events University at Buffalo. https://www.buffalo.edu/mceer/catalog.host.html/content/shared/www/mceer/publications/NCEER-94-0010.detail.html
  • Unjoh, S. 2014. Menshin (Seismic Isolation) Bridges in Japan. Technical Note of PWRI No. 4288.
  • Wang, S., J. Hwang, K. Chang, C. Shiau, W. Lin, M. Tsai, J. Hong, and Y. Yang. 2014. Sloped multi‐roller isolation devices for seismic protection of equipment and facilities. Earthquake Engineering & Structural Dynamics 43 (10):1443–61. doi:10.1002/eqe.2404.
  • Wang, S., W. Lin, Y. Chiang, and J. Hwang. 2019. Mechanical behavior of lead rubber bearings under and after nonproportional plane loading. Earthquake Engineering & Structural Dynamics 48 (13):1508–31. doi:10.1002/eqe.3211.
  • Wang, Y. P., L. Loi Chung, and W. Hsin Liao. 1999. Seismic response analysis of bridges isolated with friction pendulum bearings. Earthquake Engineering & Structural Dynamics 27 (10):1069–93. doi:10.1002/(SICI)1096-9845(199810)27:10<1069:AID-EQE770>3.0.CO;2-S.
  • Xing, M., and Q. Hongzhuan. 2011. An adaptive UKF algorithm and its application for satellite attitude determination. In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 78–81. IEEE. doi:10.1109/CECNET.2011.5768612.
  • Xin, Y., L. Jun, H. Hao, N. Yang, and L. Chao. 2022. Time-varying system identification of precast segmental columns subjected to seismic excitations. Journal of Bridge Engineering 27 (4):4022013. doi:10.1061/(ASCE)BE.1943-5592.0001848.
  • Yamamoto, S., M. Kikuchi, M. Ueda, and I. D. Aiken. 2009. A mechanical model for elastomeric seismic isolation bearings including the influence of axial load. Earthquake Engineering & Structural Dynamics 38 (2):157–80. doi:10.1002/eqe.847.
  • Zayas, V. A., and S. A. Mahin. 1987. The FPS earthquake resisting system experimental report. Earthquake Engineering Research Center.
  • Zhao, L., and X. Wang. 2009. An adaptive UKF with noise statistic estimator. 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi'an, China, 614–18. IEEE. doi:10.1109/ICIEA.2009.5138274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.