144
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Probabilistic Seismic Evaluation and Experimental Tests of Multi-Direction Damping System on a Super-Long Column-Pylon Cable-Stayed Bridge

, , , , ORCID Icon &
Pages 3904-3927 | Received 16 Jun 2022, Accepted 26 Nov 2022, Published online: 10 Jan 2023

References

  • Ahad, J., G. Khaled, I. Zainah, F. Huang, K. Mieczysław, T. Alireza, and M. Hamid. 2022. Pounding mitigation of a short-span cable-stayed bridge using a new hybrid passive control system. Engineering Analysis with Boundary Elements 134: 625–36. doi: 10.1016/j.enganabound.2021.10.020.
  • Azevedo, J., L. Guerreiro, R. Bento, M. Lopes, and J. Proença. 2010. Seismic vulnerability of lifelines in the greater Lisbon area. Bulletin of Earthquake Engineering 8 (1): 157. doi: 10.1007/s10518-009-9124-7.
  • Bruneau, M. 1998. Performance of steel bridges during the 1995 Hyogoken–Nanbu (Kobe, Japan) earthquake—A North American perspective. Engineering Structures 20 (12): 1063–78. doi: 10.1016/S0141-0296(97)00203-4.
  • Buckingham, E. 1914. On physically similar systems; illustrations of the use of dimensional equations. Physical Review 4 (4): 345–76. doi: 10.1103/PhysRev.4.345.
  • Calvi, G. M., T. J. Sullivan, and A. Villani. 2010. Conceptual seismic design of cable-stayed bridges. Journal of Bridge Engineering 14 (8): 1139–71. doi: 10.1080/13632469.2010.505275.
  • Camara, A., R. Cristantielli, M. A. Astiz, and C. Málaga-Chuquitaype. 2017. Design of hysteretic dampers with optimal ductility for the transverse seismic control of cable-stayed bridges. Earthquake Engineering & Structural Dynamics 46 (11): 1811–33. doi: 10.1002/eqe.2884.
  • Casciati, F., G. P. Cimellaro, and M. Domaneschi. 2008. Seismic reliability of a cable-stayed bridge retrofitted with hysteretic devices. Computers & structures 86 (17–18): 1769–81. doi: 10.1016/j.compstruc.2008.01.012.
  • Cornell, C. A. 1996. Calculating building seismic performance reliability: A basis for multi-level design norms. Amsterdam, Netherlands: WCEE (World Conference on Earthquake Engineering).
  • De Mari, G., M. Domaneschi, M. Ismail, L. Martinelli, and J. Rodellar. 2014. Reduced-order coupled bidirectional modeling of the Roll-N-Cage isolator with application to the updated bridge benchmark. Acta mechanica 226 (10): 3533–53. doi: 10.1007/s00707-015-1394-3.
  • Domaneschi, M., and L. Martinelli. 2013. Extending the Benchmark cable-stayed bridge for transverse response under seismic loading. Journal of Bridge Engineering ASCE 19 (3). art. no. 4013003. doi: 10.1061/(ASCE)BE.1943-5592.0000532.
  • Domaneschi, M., and L. Martinelli. 2014. Refined optimal passive control of buffeting-induced wind loading of a suspension bridge. Wind & Structures 18 (1): 1–20, an International Journal. doi: 10.12989/was.2014.18.1.001.
  • Domaneschi, M., L. Martinelli, and F. Perotti. 2014. Wind and earthquake protection of cable-supported bridges. Proceedings of the Institution of Civil Engineers - Bridge Engineering 169 (BE3): 157–71. doi: 10.1680/bren.14.00026.
  • Ellingwood, B. R. 2001. Earthquake risk assessment of building structures. Reliability Engineering & System Safety 74 (3): 251–62. doi: 10.1016/S0951-8320(01)00105-3.
  • Ellingwood, B. R. 2009. The role of risk assessment in performance-based engineering.
  • Guan, Z. G., J. Z. Li, and X. Yan. 2010. Performance test of energy dissipation bearing and its application in seismic control of a long-span bridge. Journal of Bridge Engineering 15 (6): 622–30. doi: 10.1061/(ASCE)BE.1943-5592.0000099.
  • Guan, Z. G., H. You, and J. Z. Li. 2019. An effective lateral earthquake-resisting system for long-span cable-stayed bridges against near-fault earthquakes. Engineering Structures 196 (OCT.1): 109345. doi: 10.1016/j.engstruct.2019.109345.
  • Han, Q., J. Wen, X. Du, and C. Huang. 2019. Seismic response of single pylon cable-stayed bridge under scour effect. Journal of Bridge Engineering 24 (6). doi: 10.1061/(ASCE)BE.1943-5592.0001413.
  • He, J. H., L. Xu, W. C. Yuan, and Dang, X. Z. 2018. Transverse seismic design of asymmetric single tower cable-stayed bridge under strong earthquake excitations. 2018 3rd International Conference on Smart City and Systems Engineering (ICSCSE), Xiamen, China.
  • Hu, Z. L., B. Wei, X. H. He, L. Z. Jiang, and S. S. Li. 2021. Effects of Spatial Variation of Ground Motion (SVGM) on seismic vulnerability of ultra-high tower and multi-tower cable-stayed bridges. Journal of Earthquake Engineering 26 (16): 8495–524. doi: 10.1080/13632469.2021.1991517.
  • Hu, Z. L., B. Wei, L. Z. Jiang, S. Li, Y. Yu, and C. Xiao. 2022. Assessment of optimal ground motion intensity measure for high-speed railway girder bridge (HRGB) based on spectral acceleration. Engineering Structures 252: 113728. doi: 10.1016/j.engstruct.2021.113728.
  • Hwang, H., and J. Jaw. 1990. Probabilistic damage analysis of structures. Journal of Structural Engineering 116 (7): 1992–2007. doi: 10.1061/(ASCE)0733-9445(1990)116:7(1992).
  • Infanti, S., P. Papanikolas, and G. Theodossopoulos. 2003. Rion-Antirion bridge: Full-scale testing of seismic devices.
  • Jo, H. C., S. H. Kim, J. Lee, H. G. Sohn, and Y. M. Lim. 2021. Sag-based cable tension force evaluation of cable-stayed bridges using multiple digital images. Measurement 186: 110053. doi: 10.1016/j.measurement.2021.110053.
  • Kowalsky, M. J. 2002. A displacement-based approach for the seismic design of continuous concrete bridges. Earthquake Engineering & Structural Dynamics 31 (3): 719–47. doi: 10.1002/eqe.150.
  • Lee, T. H. 2005. Probabilistic seismic evaluation of reinforced concrete structural components and systems. Berkeley: University of California.
  • Li, B., K. Bi, N. Chouw, J. W. Butterworth, and H. Hao. 2013. Effect of abutment excitation on bridge pounding. Engineering Structures 54: 57–68. doi: 10.1016/j.engstruct.2013.03.034.
  • Li, J. Z., Z. G. Guan, and J.-Z. Li. 2017. Lateral isolation system of a long-span cable-stayed bridge with heavyweight concrete girder in a high seismic region. Journal of Bridge Engineering 22 (1): 4016104.1. doi: 10.1061/(ASCE)BE.1943-5592.0000965.
  • Li, C., H. N. Li, H. Hao, K. M. Bi, and B. Chen. 2018. Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites. Engineering Structures 165: 441–56. doi: 10.1016/j.engstruct.2018.03.066.
  • Martinelli, L., and M. Domaneschi. 2017. Effect of structural control on wind fatigue mitigation in suspension bridges. International Journal of Structural Engineering 8 (4): 289–307. doi: 10.1504/IJSTRUCTE.2017.089386.
  • Mirtaheri, M., H. R. Samani, and A. P. Zandi. 2017. The study of frictional damper with various control algorithms. Earthquakes and Structures 12 (5): 479–87.
  • Narges, A. K., C. B. Mohammad, and C. Mohammadreza. 2021. Multi-objective optimum design of nonlinear viscous dampers in steel structures based on life cycle cost. Structures 34: 3776–88. doi: 10.1016/j.istruc.2021.09.100.
  • Nielson, B. G. 2005. Analytical fragility curves for highway bridges in moderate seismic zones[D]. Georgia: Georgia Institute of Technology.
  • Niu, J., Y. Ding, Y. Shi, and Z. Li. 2019. Oil damper with variable stiffness for the seismic mitigation of cable-stayed bridge in transverse direction. Soil Dynamics and Earthquake Engineering 125 (Oct.): 105719.1–105719.15. doi: 10.1016/j.soildyn.2019.105719.
  • Padgett, J. E., and R. Desroches. 2010. Methodology for the development of analytical fragility curves for retrofitted bridges. Earthquake Engineering & Structural Dynamics 37 (8): 1157–74. doi: 10.1002/eqe.801.
  • Pang, Y. T., X. Wu, G. Y. Shen, and W. C. Yuan. 2014. Seismic fragility analysis of cable-stayed bridges considering different sources of uncertainties. Journal of Bridge Engineering 19 (4): 04013015. doi: 10.1061/(ASCE)BE.1943-5592.0000565.
  • Pang, Y. T., X. Y. Zhou, W. He, J. Zhong, and O. Y. Hui. 2021. Uniform design-based gaussian process regression for data-driven rapid fragility assessment of bridges. Journal of Structural Engineering 147 (4): 0–04021008. doi: 10.1061/(ASCE)ST.1943-541X.0002953.
  • People’s Republic of China Ministry of Transport (CMT-PRC). 2008. Guidelines for seismic design of highway bridges, JTG/TB02-01-2008. Beijing: China Communications Press. [in Chinese].
  • Perotti, F., M. Domaneschi, and S. De Grandis. 2013. The numerical computation of seismic fragility of base-isolated nuclear power plants buildings[J]. Nuclear Engineering and Design 262: 189–200. doi: 10.1016/j.nucengdes.2013.04.029.
  • Powell, G. H. 2008. Displacement-based seismic design of structures. Earthquake Spectra 24 (2): 555–57. doi: 10.1193/1.2932170.
  • Priestley, M., and M. J. Kowalsky. 2000. Direct displacement-based seismic design of concrete buildings. Bulletin of the New Zealand National Society for Earthquake Engineering 33 (4): 421–44. doi: 10.5459/bnzsee.33.4.421-444.
  • Scott, B. D., R. Park, and M. Priestley. 1982. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. ACI Journal 79 (1): 13–27.
  • Shen, X., A. Camara, and A. J. Ye. 2015. Effects of seismic devices on transverse responses of piers in the Sutong Bridge. Earthquake Engineering and Engineering Vibration 14 (4): 611–23. doi: 10.1007/s11803-015-0049-7.
  • Siringoringo, D., Y. Fujino, and K. Namikawa. 2013. Seismic response analyses of the Yokohama Bay cable-stayed bridge in the 2011 great East Japan earthquake. Journal of Bridge Engineering 19 (8): 1–17. doi: 10.1061/(ASCE)BE.1943-5592.0000508.
  • Su, J., R. P. Dhakal, and J. Wang. 2017. Fiber-based damage analysis of reinforced concrete bridge piers. Soil Dynamics and Earthquake Engineering 96: 13–34. doi: 10.1016/j.soildyn.2017.01.029.
  • Wada, A., Y. Huang, and V. V. Bertero. 2004. Innovative strategies in Earthquake Engineering, Earthquake Engineering from engineering seismology to performance-based engineering.
  • Wei, K., H. F. He, J. Zhang, C. Yang, and S. Qin. 2021a. An endurance time method-based fragility analysis framework for cable-stayed bridge systems under scour and earthquake. Ocean Engineering 232: 109128. doi: 10.1016/j.oceaneng.2021.109128.
  • Wei, B., Z. L. Hu, X. H. He, and L. Jiang. 2020. Evaluation of optimal ground motion intensity measures and seismic fragility analysis of a multi-pylon cable-stayed bridge with super-high piers in mountainous areas. Soil Dynamics and Earthquake Engineering 129 (Feb.): 105945.1–105945.12. doi: 10.1016/j.soildyn.2019.105945.
  • Wei, B., Z. L. Hu, X. H. He, and L. Jiang. 2021b. System-based probabilistic evaluation of longitudinal seismic control for a cable-stayed bridge with three super-tall towers. Engineering Structures 229: 111586. doi: 10.1016/j.engstruct.2020.111586.
  • Wu, G., D.-H. Yang, T.-H. Yi, H.-N. Li, and H. Liu. 2020. Sliding life prediction of sliding bearings using dynamic monitoring data of bridges. Structural Control & Health Monitoring 27 (5). doi: 10.1002/stc.2515.
  • Xie, W., and L. Sun. 2014. Passive hybrid system for seismic failure mode improvement of a longspan cable-stayed bridges in the transverse direction. Advances in Structural Engineering 17 (3): 399–411. doi: 10.1260/1369-4332.17.3.399.
  • Xie, W., and L. Sun. 2019. Experimental and numerical verification on effects of inelastic tower links on transverse seismic response of tower of bridge full model. Engineering Structures 182 (MAR.): 1344–62. doi: 10.1016/j.engstruct.2018.12.046.
  • Yan, D., and W. C. Yuan. 2004. Conceptual seismic design for long-span cable-stayed bridges. Journal of Tongji University 32 (10): 1344–48.
  • Zhang, C., J. J. Wen, Q. Han, X. Du, Z. Lai, and G. Fu. 2022. Transverse seismic response of diamond-shaped pylon in cable-stayed bridge: Experiment and analysis. Engineering Structures 250: 113414. doi: 10.1016/j.engstruct.2021.113414.
  • Zhong, J., Z. L. Hu, W. C. Yuan, and L. Chen. 2018a. System-based probabilistic optimization of fluid viscous dampers equipped in cable-stayed bridges. Advances in Structural Engineering 21 (12): 1815–25. doi: 10.1177/1369433218756429.
  • Zhong, J., J.S. Jeon, and W. X. Ren. 2018b. Risk assessment for a long-span cable-stayed bridge subjected to multiple support excitations. Engineering Structures 176: 220–30. doi: 10.1016/j.engstruct.2018.08.107.
  • Zhong, J., J. S. Jeon, Y. H. Shao, and L. Chen. 2019. Optimal intensity measures in probabilistic seismic demand models of cable-stayed bridges subjected to pulse-like ground motions. Journal of Bridge Engineering 24 (2). doi: 10.1061/(ASCE)BE.1943-5592.0001329.
  • Zhong, J., J. S. Jeon, W. C. Yuan, and R. DesRoches. 2017. Impact of spatial variability parameters on seismic fragilities of a cable-stayed bridge subjected to differential support motions. Journal of Bridge Engineering 22 (6): 04017013. doi: 10.1061/(ASCE)BE.1943-5592.0001046.
  • Zhong, J., Y. H. Mao, and X. Z. Yuan. 2023. Lifetime seismic risk assessment of bridges with construction and aging consideration. Structures 47:2259–72. doi:10.1016/j.istruc.2022.12.035.
  • Zhong, J., Y. T. Pang, J. S. Jeon, R. Desroches, and W. C. Yuan. 2016. Seismic fragility assessment of long-span cable-stayed bridges in China. Advances in Structural Engineering 19 (11): 1797–812. doi: 10.1177/1369433216649380.
  • Zhong, J., L. F. Shi, T. Yang, X. X. Liu, and Y. X. Wang. 2022. Probabilistic seismic demand model of UBPRC columns conditioned on Pulse-Structure parameters. Engineering Structures 270:114829. doi:10.1016/j.engstruct.2022.114829.
  • Zhong, J., X. L. Zheng, Q. F. Wu, L. W. Jiang, M. He, and X. Z. Dang. 2023. Seismic fragility and resilience assessment of bridge columns with dual-replaceable composite link beam under near-fault GMs. Structures 47: 412–24. doi:10.1016/j.istruc.2022.10.131.
  • Zhong, J., Y. T. Zhu, and Q. Han. 2023. Impact of vertical ground motion on the statistical analysis of seismic demand for frictional isolated bridge in near-fault regions. Engineering Structures. doi:10.1016/j.engstruct.2022.115512.
  • Zhou, L. X., X. W. Wang, and A. J. Ye. 2019. Shake table test on transverse steel damper seismic system for long span cable-stayed bridges. Engineering Structures 179: 106–19. doi: 10.1016/j.engstruct.2018.10.073.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.