203
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Practical Approach of Probabilistic Seismic Hazard Analysis for Vector IMs Regarding Mainshock with Potentially Largest Aftershock

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 637-658 | Received 06 Oct 2022, Accepted 15 May 2023, Published online: 29 May 2023

References

  • Abrahamson, N. A., W. J. Silva, and R. Kamai. 2014. Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra 30 (3):1025–55. doi:10.1193/070913EQS198M.
  • Alessandri, S., R. Giannini, and F. Paolacci. 2013. Aftershock risk assessment and the decision to open traffic on bridges. Earthquake Engineering & Structural Dynamics 42 (15):2255–75. doi:10.1002/eqe.2324.
  • Baker, J. W. 2013. An introduction to probabilistic seismic hazard analysis. White Paper Version 2 (1):79.
  • Baker, J. W., and C. Allin Cornell. 2005. A vector‐valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthquake Engineering & Structural Dynamics 34 (10):1193–217. doi:10.1002/eqe.474.
  • Baker, J. W., and B. A. Bradley. 2017. Intensity measure correlations observed in the NGA-West2 database, and dependence of correlations on rupture and site parameters. Earthquake Spectra 33 (1):145–56. doi:10.1193/060716eqs095m.
  • Baker, J. W., and C. A. Cornell. 2008. Vector-valued intensity measures incorporating spectral shape for prediction of structural response. Journal of Earthquake Engineering 12 (4):534–54. doi:10.1080/13632460701673076.
  • Baker, J. W., and N. Jayaram. 2008. Correlation of spectral acceleration values from NGA ground motion models. Earthquake Spectra 24 (1):299–317. doi:10.1193/1.2857544.
  • Baker, J. W., T. Lin, S. K. Shahi, and N. Jayaram (2011). New ground motion selection procedures and selected motions for the PEER transportation research program. PEER report, 3.
  • Bannister, S., and K. Gledhill. 2012. Evolution of the 2010–2012 canterbury earthquake sequence. New Zealand Journal of Geology & Geophysics 55 (3):295–304. doi:10.1080/00288306.2012.680475.
  • Båth, M. 1965. Lateral inhomogeneities of the upper mantle. Tectonophysics 2 (6):483–514. doi:10.1016/0040-1951(65)90003-X.
  • Bazzurro, P. (1998) Probabilistic seismic demand analysis. Ph.D. Dissertation, Dept. of Civil and Environmental Engineering, Stanford University, Stanford, California.
  • Bazzurro, P., and C. Allin Cornell. 1999. Disaggregation of seismic hazard. Bulletin of the Seismological Society of America 89 (2):501–20. doi:10.1785/BSSA0890020501.
  • Bazzurro, P., and C. A. Cornell (2002). Vector-valued probabilistic seismic hazard analysis (VPSHA). 7th US National Conference on Earthquake Engineering. Boston, MA, US.
  • Bazzurro, P., J. Park, and P. Tothong. 2011. Vector-valued probabilistic seismic hazard analysis of correlated ground motion parameters. Applications of Statistics and Probability in Civil Engineering 1596–604. Zürich, Switzerland.
  • Bazzurro, P., P. Tothong, and J. Park (2009). Efficient approach to vector-valued probabilistic seismic hazard analysis of multiple correlated ground-motion parameters. International Conference on Structural Safety and Reliability. Osaka, Japan: ICOSSAR09.
  • Bedford, T., and R. M. Cooke. 2001. Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence 32 (1):245–68. doi:10.1023/A:1016725902970.
  • Boyd, O. S. 2012. Including foreshocks and aftershocks in time‐independent probabilistic seismic‐hazard analyses. Bulletin of the Seismological Society of America 102 (3):909–17. doi:10.1785/0120110008.
  • Chen, K. C., and J. H. Wang. 2012. Correlations between the mainshock and the largest aftershock for Taiwan earthquakes. Pure & Applied Geophysics 169 (7):1217–29. doi:10.1007/s00024-011-0352-9.
  • Chian, S. C., A. Pomonis, K. Saito, S. Fraser, K. Goda, J. Macabuag, and P. Sammonds (2012). Post earthquake field investigation of the Mw9. 0 Tōhoku earthquake of 11 th March 2011. Fifteen World Conference on Earthquake Engineering. September. Lisbon, Portugal.
  • Chi, W. C., and D. Dreger. 2004. Crustal deformation in Taiwan: Results from finite source inversions of six Mw> 5.8 Chi‐Chi aftershocks. Journal of Geophysical Research: Solid Earth 109 (B7). doi:10.1029/2003JB002606.
  • Cito, P., and I. Iervolino. 2022. On occurrence disaggregation of probabilistic seismic hazard. Earthquake Engineering & Structural Dynamics 51 (14):3296–303. doi:10.1002/eqe.3723.
  • Cornell, C. A. 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America 58 (5):1583–606. doi:10.1785/BSSA0580051583.
  • Di Sarno, L., and J. R. Wu. 2021. Fragility assessment of existing low-rise steel moment-resisting frames with masonry infills under mainshock-aftershock earthquake sequences. Bulletin of Earthquake Engineering 19 (6):2483–504. doi:10.1007/s10518-021-01080-6.
  • Du, W. 2019. Empirical correlations of frequency-content parameters of ground motions with other intensity measures. Journal of Earthquake Engineering 23 (7):1073–91. doi:10.1080/13632469.2017.1342303.
  • Durante, F., and C. Sempi. 2010. Copula theory: An introduction. In Copula theory and its applications, 3–31. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-12465-5_1.
  • Eads, L., E. Miranda, and D. G. Lignos. 2015. Average spectral acceleration as an intensity measure for collapse risk assessment. Earthquake Engineering & Structural Dynamics 44 (12):2057–73. doi:10.1002/eqe.2575.
  • Ebrahimian, H., F. Jalayer, D. Asprone, A. M. Lombardi, W. Marzocchi, A. Prota, and G. Manfredi. 2014. Adaptive daily forecasting of seismic aftershock hazard. Bulletin of the Seismological Society of America 104 (1):145–61. doi:10.1785/0120130040.
  • Felzer, K. R., T. W. Becker, R. E. Abercrombie, G. Ekström, and J. R. Rice. 2002. Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Mw 7.3 Landers earthquake. Journal of Geophysical Research: Solid Earth 107 (B9):ESE–6. doi:10.1029/2001JB000911.
  • Field, E., K. Porter, and K. Milner. 2017. A prototype operational earthquake loss model for California based on UCERF3-ETAS–A first look at valuation. Earthquake Spectra 33 (4):1279–99. doi:10.1193/011817eqs017m.
  • Fox, M. J., P. J. Stafford, and T. J. Sullivan. 2016. Seismic hazard disaggregation in performance‐based earthquake engineering: Occurrence or exceedance? Earthquake Engineering & Structural Dynamics 45 (5):835–42. doi:10.1002/eqe.2675.
  • Goda, K., and G. M. Atkinson. 2009. Interperiod dependence of ground-motion prediction equations: A copula perspective. Bulletin of the Seismological Society of America 99 (2A):922–27. doi:10.1785/0120080286.
  • Goda, K., A. Pomonis, S. C. Chian, M. Offord, K. Saito, P. Sammonds, and J. Macabuag. 2013. Ground motion characteristics and shaking damage of the 11th March 2011 M w9. 0 Great East Japan earthquake. Bulletin of Earthquake Engineering 11 (1):141–70. doi:10.1007/s10518-012-9371-x.
  • Han, R., Y. Li, and J. van de Lindt. 2015. Assessment of seismic performance of buildings with incorporation of aftershocks. Journal of Performance of Constructed Facilities 29 (3):04014088. doi:10.1061/(ASCE)CF.1943-5509.0000596.
  • Holzer, T. L. 2000. Implications for earthquake risk reduction in the United States from the Kocaeli, Turkey, earthquake of August 17, 1999, Vol. 1193. US Government Printing Office.
  • Huang, Y., J. Wu, T. Zhang, and D. Zhang. 2008. Relocation of the M8. 0 Wenchuan earthquake and its aftershock sequence. Science in China Series D: Earth Sciences 51 (12):1703–11. doi:10.1007/s11430-008-0135-z.
  • Iervolino, I., E. Chioccarelli, and M. Giorgio. 2018. Aftershocks’ effect on structural design actions in Italy. Bulletin of the Seismological Society of America 108 (4):2209–20. doi:10.1785/0120170339.
  • Iervolino, I., P. Cito, G. Felicetta, C. Lanzano, and A. Vitale. 2021. Exceedance of design actions in epicentral areas: Insights from the ShakeMap envelopes for the 2016–2017 central Italy sequence. Bulletin of Earthquake Engineering 19 (13):5391–414. doi:10.1007/s10518-021-01192-z.
  • Iervolino, I., M. Giorgio, and B. Polidoro. 2014. Sequence‐based probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America 104 (2):1006–12. doi:10.1785/0120130207.
  • Jayaram, N., and J. W. Baker. 2008. Statistical tests of the joint distribution of spectral acceleration values. Bulletin of the Seismological Society of America 98 (5):2231–43. doi:10.1785/0120070208.
  • Ji, K., W. Wang, X. Yu, Y. Ren, and R. Wen. 2022. Evaluation of vector hazard for conditional mean spectrum with different definitions of multivariate exceedance rate. Journal of Earthquake Engineering 27 (7):1–20. doi:10.1080/13632469.2022.2090462.
  • Kagan, Y. Y. 2002. Aftershock zone scaling. Bulletin of the Seismological Society of America 92 (2):641–55. doi:10.1785/0120010172.
  • Kam, W. Y., S. Pampanin, and K. Elwood. 2011. Seismic performance of reinforced concrete buildings in the 22 February Christchurch (Lyttelton) earthquake. Bulletin of the New Zealand Society for Earthquake Engineering 44 (4):239–78. doi:10.5459/bnzsee.44.4.239-278.
  • Kohrangi, M., P. Bazzurro, and D. Vamvatsikos. 2016. Vector and scalar IMs in structural response estimation, part I: Hazard analysis. Earthquake Spectra 32 (3):1507–24. doi:10.1193/053115EQS080M.
  • Kumitani, S., and T. Takada (2008). Probabilistic assessment of buildings damage considering aftershocks of earthquakes. 14th World Conference on Earthquake Engineering. Beijing, China.
  • Li, Q., and B. R. Ellingwood. 2007. Performance evaluation and damage assessment of steel frame buildings under main shock–aftershock earthquake sequences. Earthquake Engineering & Structural Dynamics 36 (3):405–27. doi:10.1002/eqe.667.
  • Nelsen, R. B. 2007. An introduction to copulas. Springer Science & Business Media. New York, USA.
  • Papadopoulos, A. N., M. Kohrangi, and P. Bazzurro. 2019. Correlation of spectral acceleration values of mainshock-aftershock ground motion Pairs. Earthquake Spectra 35 (1):39–60. doi:10.1193/020518EQS033M.
  • Phoon, K. K., and J. Ching, Eds. 2015. Risk and reliability in geotechnical engineering. Boca Raton, FL, USA: CRC Press.
  • Rajeev, P., P. Franchin, and P. E. Pinto. 2008. Increased accuracy of vector-IM-based seismic risk assessment? Journal of Earthquake Engineering 12 (S1):111–24. doi:10.1080/13632460801925798.
  • Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6 (2):461–64. doi:10.1214/aos/1176344136.
  • Seyedi, D. M., P. Gehl, L. Douglas, L. Davenne, N. Mezher, S. Ghavamian. 2010. Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis. Earthquake Engineering & Structural Dynamics 39:91–108. doi:10.1002/eqe.939.
  • Shafaei, H., and H. Naderpour. 2021. Collapse capacity of ordinary RC moment frames considering mainshock-aftershock effects. Journal of Earthquake Engineering 26 (10):1–20. doi:10.1080/13632469.2021.1871679.
  • Shcherbakov, R., and D. L. Turcotte. 2004. A modified form of Bath’s law. Bulletin of the Seismological Society of America 94 (5):1968–75. doi:10.1785/012003162.
  • Shokrabadi, M., and H. V. Burton. 2018a. Building service life economic loss assessment under sequential seismic events. Earthquake Engineering & Structural Dynamics 47 (9):1864–81. doi:10.1002/eqe.3045.
  • Shokrabadi, M., and H. V. Burton. 2018b. Risk-based assessment of aftershock and mainshock-aftershock seismic performance of reinforced concrete frames. Structural Safety 73:64–74. doi:10.1016/j.strusafe.2018.03.003.
  • Toro, G. R., and W. J. Silva. 2001. Scenario earthquakes for Saint Louis, MO, Memphis, TN, and seismic hazard maps for the central United States region: Including the effect of site conditions, 247. Boulder, Colorado: Risk Engineering.
  • Tsai, C. C., Kishida, T., & Lin, W. C. 2021. Adjustment of site factors for basin effects from site response analysis and deep downhole array measurements in Taipei. Engineering Geology 285:106071.
  • Utsu, T. 1970. Aftershocks and earthquake statistics (I): Some parameters which characterize an aftershock sequence and their interrelations. Journal of the Faculty of Science, Hokkaido University 3:129–95.
  • Wooddell, K. E., and N. A. Abrahamson. 2014. Classification of main shocks and aftershocks in the NGA-West2 database. Earthquake Spectra 30 (3):1257–67. doi:10.1193/071913EQS208M.
  • Wu, C., Peng, Z., & Ben-Zion, Y. 2010. Refined thresholds for non-linear ground motion and temporal changes of site response associated with medium-size earthquakes. Geophysical Journal International 182 (3):1567–76.
  • Wu, M. H., J. P. Wang, and P. E. Chiang. 2022. Cumulative absolute velocity (CAV) seismic hazard assessment for Taiwan. Journal of Earthquake Engineering 26 (7):3440–60. doi:10.1080/13632469.2020.1803161.
  • Yaghmaei‐Sabegh, S., P. Shoaeifar, and N. Shoaeifar. 2017. Probabilistic seismic‐hazard analysis including earthquake clusters. Bulletin of the Seismological Society of America 107 (5):2367–79. doi:10.1785/0120170031.
  • Yamada, Y., H. Iemura, K. Kawano, and K. Venkataramana. 1989. Seismic response of offshore structures in random seas. Earthquake Engineering & Structural Dynamics 18 (7):965–81.
  • Yeo, G. L., and C. A. Cornell. 2009. A probabilistic framework for quantification of aftershock ground‐motion hazard in California: Methodology and parametric study. Earthquake Engineering & Structural Dynamics 38 (1):45–60. doi:10.1002/eqe.840.
  • Yu, X., Z. Zhou, W. Du, and D. Lu. 2021. Development of fragility surfaces for reinforced concrete buildings under mainshock‐aftershock sequences. Earthquake Engineering & Structural Dynamics 50 (15):3981–4000. doi:10.1002/eqe.3542.
  • Zhai, C. H., W. P. Wen, S. Li, Z. Chen, Z. Chang, and L. L. Xie. 2014. The damage investigation of inelastic SDOF structure under the mainshock–aftershock sequence-type ground motions. Soil Dynamics and Earthquake Engineering 59:30–41. doi:10.1016/j.soildyn.2014.01.003.
  • Zhou, Z., H. Xu, P. Gardoni, D. Lu, and X. Yu. 2021. Probabilistic demand models and fragilities for reinforced concrete frame structures subject to mainshock-aftershock sequences. Engineering Structures 245:112904. doi:10.1016/j.engstruct.2021.112904.
  • Zhou, Z., X. Yu, and D. Lu. 2020. Identifying optimal intensity measures for predicting damage potential of mainshock–aftershock sequences. Applied Sciences 10 (19):6795. doi:10.3390/app10196795.
  • Zhu, R. G., D. G. Lu, X. H. Yu, and G. Y. Wang. 2017. Conditional mean spectrum of aftershocks. Bulletin of the Seismological Society of America 107 (4):1940–53. doi:10.1785/0120160254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.