244
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the Local Site Effects and Their Implication to the Seismic Risk of the UNESCO World Heritage Site Old City of Dubrovnik (Croatia)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 731-759 | Received 13 Jan 2023, Accepted 26 May 2023, Published online: 13 Jun 2023

References

  • Aki, K. 1993. Local site effects on weak and strong ground motion. Tectonophysics 218 (1–3):93–111. doi:10.1016/0040-1951(93)90262-I.
  • Amoroso, S., I. Gaudiosi, M. Tallini, G. Di Giulio, and G. Milana. 2018. 2D site response analysis of a cultural heritage: The case study of the site of Santa Maria di Collemaggio Basilica (L’aquila, Italy). Bulletin of Earthquake Engineering 16 (10):4443–66. doi:10.1007/s10518-018-0356-2.
  • Askan, A., S. Karimzadeh, M. Asten, N. Kilic, F. N. Şişman, and C. Erkmen. 2015. Assessment of seismic hazard in the Erzincan (Turkey) region: Construction of local velocity models and evaluation of potential ground motions. Turkish Journal of Earth Sciences 24 (6):529–65. doi:10.3906/yer-1503-8.
  • Bard, P.-Y., M. Campillo, F. J. Chávez-Garcia, and F. Sánchez-Sesma. 1988. The Mexico earthquake of September 19, 1985—A theoretical investigation of large- and small-scale amplification effects in the Mexico City Valley. Earthquake Spectra 4 (3):609–33. doi:10.1193/1.1585493.
  • Bard, P., A. Duval, A. Koehler, and S. Rao, 2004. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation. SESAME H/V User Guidelines. p. 62. Accessed August 12, 2022 http://sesame.geopsy.org/SES_Reports.htm.
  • Bonnefoy-Claudet, S., C. Cornou, P.-Y. Bard, F. Cotton, P. Moczo, J. Kristek, and D. Fäh. 2006. H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International 167 (2):827–37. doi:10.1111/j.1365-246X.2006.03154.x.
  • Boore, D. M. 2004. Estimating Vs(30) (or NEHRP site classes) from shallow velocity models (depths < 30 m). Bulletin of the Seismological Society of America 94 (2):591–97. doi:10.1785/0120030105.
  • Castellaro, S., and F. Mulargia. 2009. VS30 estimates using constrained H/V measurements. Bulletin of the Seismological Society of America 99 (2A):761–73. doi:10.1785/0120080179.
  • CEN-Eurocode 8. 2004. Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings (EN 1998-1:2004). Vol. 1, 231. Brussels: European Committee for Normalization. [Authority: The European Union per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC].
  • Cetin, K. O., S. Altun, A. Askan, M. Akgün, A. Sezer, C. Kıncal, Ö. C. Özdağ, Y. İ̇pek, B. Unutmaz, Z. Gülerce, et al. 2022. The site effects in Izmir Bay of October 30 2020, M7. 0 Samos earthquake. Soil Dynamics and Earthquake Engineering 152:107051. doi:10.1016/j.soildyn.2021.107051.
  • D’Amico, S., M. Picozzi, F. Baliva, and D. Albarello. 2008. Ambient noise measurements for preliminary site-effects characterization in the Urban area of Florence, Italy. Bulletin of the Seismological Society of America 98 (3):1373–88. doi:10.1785/0120070231.
  • Del Monaco, F., M. Tallini, C. De Rose, and F. Durante. 2013. HVNSR survey in historical downtown L’Aquila (central Italy): Site resonance properties vs. subsoil model. Engineering Geology 158:34–47. doi:10.1016/j.enggeo.2013.03.008.
  • Faivre, S., T. Bakran-Petricioli, M. Herak, J. Barešić, and D. Borković. 2021. Late Holocene interplay between coseismic uplift events and interseismic subsidence at Koločep island and Grebeni islets in the Dubrovnik archipelago (southern Adriatic, Croatia). Quaternary Science Reviews 274:1–16. doi:10.1016/j.quascirev.2021.107284.
  • Fiaschi, A., L. Matassoni, G. Pratesi, C. A. Garzonio, and P. Malesani. 2012. Microtremor analysis of the Basilica of the Holy Sepulchre Jerusalem. Soil Dynamics and Earthquake Engineering 41:14–22. doi:10.1016/j.soildyn.2012.05.003.
  • Foti, S., F. Hollender, F. Garofalo, D. Albarello, M. Asten, P.-Y. Bard, C. Comina, C. Cornou, B. Cox, G. Di Giulio, et al. 2018. Guidelines for the good practice of surface wave analysis: A product of the InterPACIFIC project. Bulletin of Earthquake Engineering 16 (6):2367–420. doi:10.1007/s10518-017-0206-7.
  • Građevinski institut 1981. Geotehnički istražni radovi i seizmička mikrorajonizacija stare gradske jezgre Dubrovnika, Geomehanička istraživanja, Fakultet građevinskih znanosti Sveučilišta u Zagrebu, Zavod za geotehniku (in Croatian).
  • Grgić, M., J. Bender, and T. Bašić. 2020. Estimating vertical land motion from remote sensing and in-situ observations in the Dubrovnik area (Croatia): A multi-method case study. Remote Sensing 12 (21):3543. doi:10.3390/rs12213543.
  • Griffiths, S. C., B. R. Cox, E. M. Rathje, and D. P. Teague. 2016. Surface-wave dispersion approach for evaluating statistical models that account for shear-wave velocity uncertainty. Journal of Geotechnical and Geoenvironmental Engineering 142 (11):04016061 1–16. doi:10.1061/(ASCE)GT.1943-5606.0001552.
  • Gušić, I., and V. Jelaska. 1990. Stratigrafija gornjokrednih naslaga otoka Brača u okviru geodinamske evolucije Jadranske karbonatne platforme (Upper Cretaceous stratigraphy of the Island of Brač within the geodynamic evolution of the Adriatic carbonate platform). In Djela Jugoslavenske akademije znanosti i umjetnosti, Vol. 69, 160. Zagreb: Institut za geološka istraživanja Zagreb, OOUR za geologiju.
  • Herak, M. 2011. Overview of recent ambient noise measurements in Croatia in free-field and in buildings. Geofizika 28:21–40.
  • Herak, M., D. Herak, and S. Markušić. 1996. Revision of the earthquake catalogue and seismicity of Croatia, 1908–1992. Terra Nova 8 (1):86–94. doi:10.1111/j.1365-3121.1996.tb00728.x.
  • Husinec, A., 2002. Stratigrafija mezozojskih naslaga otoka Mljeta u okviru geodinamske evolucije južnoga dijela Jadranske karbonatne platforme. Unpublished PhD thesis, Zagreb University, 300. (includes English Summary).
  • Husinec, A., B. Prtoljan, L. Fuček, and T. Korbar. 2016. Osnovna geološka karta Republike Hrvatske mjerila 1:50 000 – list Otok Mljet. Zagreb: Hrvatski geološki institut, Zavod za geologiju. 1 list, ISBN: 978-953-6907-57-1. https://www.hgi-cgs.hr/osnovna-geoloska-karta/150-000-geolosko-geografska-podrucja/.
  • Jakka, R. S., A. Desai, and S. Foti. 2023. Guidelines for minimization of uncertainties and estimation of a reliable shear wave velocity profile using MASW testing: A state-of-the-art review. In Advances in Earthquake Geotechnics, ed. T. G. Sitharam, R. S. Jakka, and S. Kolathayar, 211–53. Singapore: Springer Tracts in Civil Engineering, Springer. doi:10.1007/978-981-19-3330-1_12.
  • Jelić, R. 1994. Dubrovnik je nastao u uvali. Naše More 41 (3–4):167–74. (in Croatian). https://hrcak.srce.hr/209750.
  • Kaklamanos, J., L. G. Baise, E. M. Thompson, and L. Dorfmann. 2015. Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites. Soil Dynamics and Earthquake Engineering 69:207–19. doi:10.1016/j.soildyn.2014.10.016.
  • Kanai, K. 1957. Semi-empirical formula for the seismic characteristics of the ground motion. Bulletin of the Earthquake Research Institute 35 (2):309–25.
  • Korbar, T. 2009. Orogenic evolution of the external dinarides in the NE Adriatic region: A model constrained by tectonostratigraphy of upper cretaceous to Paleogene carbonates. Earth-Science Reviews 96 (4):296–312. doi:10.1016/j.earscirev.2009.07.004.
  • Korbar, T., T. Grgasović, L. Fuček. 2023. Geology of the Old Town Dubrovnik. In 36th IAS Meeting of Sedimentology, Dubrovnik, 12–16 June 2023, Field Trips Guidebook, ed. T. Korbar, Zagreb: Field Trip B1.
  • Kuk, V., E. Prelogović, and I. Dragičević. 2000. Seismotectonically active zones in the Dinarides, Geol. Croat 53 (2):295–303.
  • Labbé, P., and R. Paolucci 2022. Developments relating to seismic action in the Eurocode 8 of next generation. In: R. Vacareanu and C. Ionescu (ed.) Progresses in European Earthquake Engineering and Seismology. ECEES 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. doi:10.1007/978-3-031-15104-0_2.
  • Leyton, F., S. Ruiz, S. A. Sepúlveda, J. P. Contreras, S. Rebolledo, and M. Astroza. 2013. Microtremors’ HVSR and its correlation with surface geology and damage observed after the 2010 Maule earthquake (Mw 8.8) at Talca and Curico, Central Chile. Engineering Geology 161:26–33. doi:10.1016/j.enggeo.2013.04.009.
  • Luzi, L., R. Puglia, F. Pacor, M. R. Gallipoli, D. Bindi, and M. Mucciarelli. 2011. Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bulletin of Earthquake Engineering 9 (6):1877–98. doi:10.1007/s10518-011-9274-2.
  • Marković, B., 1971. Osnovna geološka karta SFRJ 1:100.000, List Dubrovnik K34–49. Zavod za geološka i geofizička istraživanja, Beograd (1963–1965), Savezni geološki institut, Beograd. Available on: https://www.hgi-cgs.hr/osnovna-geoloska-karta-republike-hrvatske-1100-000/
  • Markušić, S., I. Ivančić, and I. Sović. 2017. The 1667 Dubrovnik earthquake – some new insights. Studia Geophysica Et Geodaetica 61 (3):587–600. doi:10.1007/s11200-016-1065-4.
  • Markušić, S., D. Stanko, D. Penava, D. Trajber, and R. Šalić. 2021. Preliminary observations on historical castle Trakošćan (Croatia) performance under recent ML ≥ 5.5 earthquakes. Geosciences 11 (11):461, 17. doi:10.3390/geosciences11110461.
  • Mihevc, A., M. Prelovšek, and N. Zupan Hajna, eds. 2010. Introduction to the dinaric karst 71. Postojna: Karst Research Institute at ZRC SAZU. doi:10.3986/9789612541989.
  • Miura, H., H. Fujita, K. S. S. Than, and Y. Hibino. 2019. Estimation of site response during the 2016 Chauk, Myanmar earthquake based on microtremor-derived S-wave velocity structures. Soil Dynamics and Earthquake Engineering 126:105781. doi:10.1016/j.soildyn.2019.105781.
  • Mucciarelli, M., and M. R. Gallipoli. 2001. A critical review of 10 years of microtremor HVSR technique. Bolletino di geofisica teorica es applicate 42 (3–4):255–66.
  • Nakamura, Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of the Railway Technical Research Institute 30 (1):25–30.
  • Nakamura, Y., E. D. Gurler, and J. Saita, 1999. Dynamic characteristics of leaning tower in Pisa using microtremor – preliminary results. 25th Japan Conference on Earthquake Engineering, Tokyo
  • Panzera, F., G. Romagnoli, G. Tortorici, S. D’Amico, M. Rizza, and S. Catalano. 2019. Integrated use of ambient vibrations and geological methods for seismic microzonation. Journal of Applied Geophysics 170:103820. doi:10.1016/j.jappgeo.2019.103820.
  • Paolucci, E., D. Albarello, S. D’Amico, E. Lunedei, L. Martelli, M. Mucciarelli, and D. Pileggi. 2015. A large scale ambient vibration survey in the area damaged by May–June 2012 seismic sequence in Emilia Romagna, Italy. Bulletin of Earthquake Engineering 13 (11):3187–206. doi:10.1007/s10518-015-9767-5.
  • Park, C. B., R. D. Miller, and J. Xia. 1999. Multichannel analysis of surface waves. Geophysics 64 (3):800–08. doi:10.1190/1.1444590.
  • Park, H.-J., D.-S. Kim, and D.-M. Kim. 2013. Seismic risk assessment of architectural heritages in Gyeongju considering local site effects. Natural Hazards and Earth System Sciences 13 (2):251–62. doi:10.5194/nhess-13-251-2013.
  • Perron, V., P. Bergamo, and D. Fäh. 2022. Evaluating the minimum number of earthquakes in empirical site response assessment: Input for new requirements for microzonation in the Swiss building codes. Frontiers in Earth Science 10:917855. doi:10.3389/feart.2022.917855.
  • Picha, F. J. 2002. Late orogenic strike-slip faulting and escape tectonics in frontal Dinarides-Hellenides, Croatia, Yugoslavia, Albania and Greece. AAPG Bulletin 86 (9):1659–71.
  • Pitilakis, K., E. Riga, A. Anastasiadis, S. Fotopoulou, and S. Karafagka. 2019. Towards the revision of EC8: Proposal for an alternative site classification scheme and associated intensity dependent spectral amplification factors. Soil Dynamics and Earthquake Engineering 126:126. doi:10.1016/j.soildyn.2018.03.030.
  • Salonikios, T., N. Theodoulidis, and G. Zacharopoulou. 2020. Seismic response evaluation of monuments based on ambient vibrations: The case studies of a byzantine basilica and an ottoman bath in Thessaloniki (Greece). Journal of Seismology 24 (4):777–802. doi:10.1007/s10950-020-09906-7.
  • Schmid, S. M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schefer, R. Schuster, M. Tischler, and K. Ustaszewski. 2008. The alps– Carpathians–dinarides connection: A compilation of tectonic units. Swiss Journal of Geosciences 101 (1):139–83. doi:10.1007/s00015-008-1247-3.
  • Schwellenbach, I., K.-G. Hinzen, G. M. Petersen, and C. Bottari. 2020. Combined use of refraction seismic, MASW and ambient noise array measurements to determine the near surface velocity structure in the archaeological park of selinunte, SW Sicily. Journal of Seismology 24 (4):753–76. doi:10.1007/s10950-020-09909-4.
  • Seht, I. V., and J. Wohlenberg. 1999. Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America 89 (1):250–59. doi:10.1785/BSSA0890010250.
  • Šolaja, D., S. Miko, D. Brunović, N. Ilijanić, O. Hasan, G. Papatheodorou, M. Geraga, T. Durn, D. Christodoulou, and I. Razum. 2022. Late quaternary evolution of a submerged karst basin influenced by active tectonics (Koločep Bay, Croatia). Journal of Marine Science and Engineering 10 (7):881. doi:10.3390/jmse10070881.
  • Stanko, D., and S. Markušić. 2020. An empirical relationship between resonance frequency, bedrock depth and Vs30 for Croatia based on HVSR forward modelling. Natural Hazards 103 (3):3715–43. doi:10.1007/s11069-020-04152-z.
  • Stanko, D., I. Sović, N. Belić, and S. Markušić. 2022. Analysis of local site effects in the Međimurje Region (North Croatia) and its consequences related to historical and recent earthquakes. Remote Sensing 14 (19):4831. doi:10.3390/rs14194831.
  • Steuber, T., T. Korbar, V. Jelaska, and I. Gušić. 2005. Strontium-isotope stratigraphy of upper cretaceous platform carbonates of the island of Brač (Adriatic Sea, Croatia): Implications for global correlation of platform evolution and biostratigraphy. Cretaceous Research 26 (5):741–56. doi:10.1016/j.cretres.2005.04.004.
  • Surić, M., T. Korbar, and M. Juračić. 2014. Tectonic constraints on the late pleistocene-holocene relative sea-level change along the north-eastern Adriatic coast (Croatia). Geomorphology 220:93–103. doi:10.1016/j.geomorph.2014.06.001.
  • Toro, G. R. 2022. Uncertainty in shear-wave velocity profiles. Journal of Seismology 26 (4):713–30. doi:10.1007/s10950-022-10084-x.
  • Tün, M., E. Pekkan, O. Özel, and Y. Guney. 2016. An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method. Geophysical Journal International 207 (1):589–607. doi:10.1093/gji/ggw294.
  • Vlahović, I., J. Tišljar, I. Velić, and D. Matičec. 2005. Evolution of the Adriatic carbonate platform: Palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 220 (3–4):333–60. doi:10.1016/j.palaeo.2005.01.011.
  • Xia, J., R. D. Miller, and C. B. Park. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64 (3):691–700. doi:10.1190/1.1444578.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.