918
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Friction Dependencies on the Bidirectional Earthquake Response of Double Concave Friction Pendulum Bearings

, , , , &
Pages 777-798 | Received 25 Jun 2022, Accepted 25 May 2023, Published online: 07 Jun 2023

References

  • AASHTO. 1993. AASHTO Guide for Design of Pavement Structures. Washington, DC, US: American Association of State Highway and Transportation Officials.
  • Architectural Institute of Japan. 2016. Design recommendations for seismically isolated buildings. Tokyo, Japan: Architectural Institute of Japan.
  • ASCE/SEI 7-16. 2016. Minimum design loads and associated criteria for buildings and other structures. Reston, VA, USA: American Society of Civil Engineers (ASCE).
  • Bao, Y., T. C. Becker, T. Sone, and H. Hamaguchi. 2017. Experimental study of the effect of restraining rim design on the extreme behavior of pendulum sliding bearings. Earthquake Engineering & Structural Dynamics 47 (4):906–24. doi:10.1002/eqe.2997.
  • Benzoni, G., and F. Seible. 1998. Design of the Caltrans Seismic Response Modification Device (SRMD) test facility (IWGFR–96), Vol. 325. Vienna, Austria: International Atomic Energy Agency (IAEA); International Working Group on Fast Reactors.
  • Bertero, V. V., and Y. Bozorgnia. 2004. The early years of earthquake engineering and its modern goal. Earthquake Engineering: From engineering seismology to performance-based engineering. ed. Bozorgnia and VV Bertero. London, UK: CRC Press. doi:10.1201/9780203486245.ch1.
  • Bhagat, S., and A. C. Wijeyewickrema. 2017. Seismic response evaluation of base-isolated reinforced concrete buildings under bidirectional excitation. Earthquake Engineering and Engineering Vibration 16 (2):365–82. doi:10.1007/s11803-017-0387-8.
  • Calvi, P. M., and G. M. Calvi. 2018. Historical development of friction-based seismic isolation systems. Soil Dynamics and Earthquake Engineering 106:14–30. doi:10.1016/j.soildyn.2017.12.003.
  • Calvi, G. M., and V. Spaziante. 2009. Reconstruction between temporary and definitive: The CASE project. Progettazione sismica 3:221–250.
  • Constantinou, M. C., A. S. Whittaker, Y. Kalpakidis, D. M. Fenz, and G. P. Warn. 2007. Performance of seismic isolation hardware under service and seismic loading. Technical Rep. No. MCEER-07-0012, MCEER, NY, US.
  • De Domenico, D., G. Ricciardi, and G. Benzoni. 2018. Analytical and finite element investigation on the thermo-mechanical coupled response of friction isolators under bidirectional excitation. Soil Dynamics and Earthquake Engineering 106:131–47. doi:10.1016/j.soildyn.2017.12.019.
  • De Luca, A., and L. G. Guidi. 2019. State of art in the worldwide evolution of base isolation design. Soil Dynamics and Earthquake Engineering 125:105722. doi:10.1016/j.soildyn.2019.105722.
  • Earthquake Protection Systems. n.d. https://www.earthquakeprotection.com/.
  • European Committee for Standardization. 2004. General rules, Eurocode 8. Design provisions for earthquake resistance of structures; Part 1: Seismic actions and rules for buildings. BS EN 1998-1, European Committee for Standardization, Brussels, Belgium.
  • Furinghetti, M., A. Pavese, V. Quaglini, and P. Dubini. 2019. Experimental investigation of the cyclic response of double curved surface sliders subjected to radial and bidirectional sliding motions. Soil Dynamics and Earthquake Engineering 117:190–202. doi:10.1016/j.soildyn.2018.11.020.
  • Furinghetti, M., T. Yang, P. M. Calvi, and A. Pavese. 2021. Experimental evaluation of extra-stroke displacement capacity for curved surface slider devices. Soil Dynamics and Earthquake Engineering 146:106752. doi:10.1016/j.soildyn.2021.106752.
  • Hideji, N., N. Koji, and T. Atsushi. 2014. 21241 Development of spherical sliding bearing resisting high bearing pressure (Part 1) [in Japanese]. Tokyo, Japan: Architectural Institute of Japan, Construction II.
  • Japan Society of Seismic Isolation. n.d. https://www.jssi.or.jp/index.html.
  • Kelly, J. M. 1990. Base isolation: Linear theory and design. Earthquake Spectra 6 (2):223–44. doi:10.1193/1.1585566.
  • Kitayama, S., and M. C. Constantinou. 2021. Effect of superstructure modeling assumptions on the seismic performance of seismically isolated buildings. Earthquake Engineering & Structural Dynamics 50 (7):1805–23. doi:10.1002/eqe.3427.
  • K-NET. n.d. https://www.kyoshin.bosai.go.jp/
  • Koji, N., W. Naoya, and K. Hasegawa. 2017. 21479 Full-scale experiment of low-friction-type spherical sliding bearing on behavior confirmation [in Japanese]. Construction II: Architectural Institute of Japan.
  • Kumar, M., A. S. Whittaker, and M. C. Constantinou. 2015. Characterizing friction in sliding isolation bearings. Earthquake Engineering & Structural Dynamics 44 (9):1409–25. doi:10.1002/eqe.2524.
  • Li, J., S. Kishiki, S. Yamada, S. Yamazaki, A. Watanabe, and M. Terashima. 2020. Energy-based prediction of the displacement of DCFP bearings. Applied Sciences 10 (15):5259. doi:10.3390/app10155259.
  • Li, J., M. Nitawaki, S. Kishiki, T. Ishida, K. Nishimoto, A. Watanabe, and S. Yamada. 2018. Analytical study on spherical sliding bearing (SSB) subjected to tri-directional excitation: Effect of bearing stress and velocity dependency of SSB on the response of isolation system. Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, Paper No. 21490, Tohoku, Japan, September 4–6.
  • Li, J., S. Yamada, S. Kishiki, S. Yamazaki, A. Watanabe, and M. Terashima. 2021. Experimental and numerical study of spherical sliding bearing (SSB) - part 3: Seismic response. Proceeding 17th World Conference on Earthquake Engineering, 17WCEE, Paper N° C000736, Session No. O01C01, Sendai, Japan, September– October 28–2.
  • Lomiento, G., N. Bonessio, and G. Benzoni. 2013. Concave sliding isolator’s performance under multi-directional excitation. Ingegneria Sismica 30 (3):17–32. doi:10.1080/13632469.2013.814611.
  • Makris, N. 2019. Seismic isolation: Early history. Earthquake Engineering & Structural Dynamics 48 (2):269–83. doi:10.1002/eqe.3124.
  • Mokha, A. S., M. C. Constantinou, and A. M. Reinhorn. 1993. Verification of friction model of teflon bearings under triaxial load. Journal of Structural Engineering 119 (1):240–61. doi:10.1061/(ASCE)0733-9445(1993)119:1(240).
  • Mosqueda, G., A. S. Whittaker, and G. L. Fenves. 2004. Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation. Journal of Structural Engineering 130 (3):433–42. doi:10.1061/(ASCE)0733-9445(2004)130:3(433).
  • Nakamura, H., K. Nishimoto, H. Hasegawa, and H. Nakamura. 2015. Predictive method of a temperature rise and the friction coefficient of spherical sliding bearing (Part 3), Paper No. 21232. AIJ, Kanto, Japan, September 4–6.
  • Nakashima, M., P. Pan, D. Zamfirescu, and R. Weitzmann. 2004. Post-Kobe approach for design and construction of base-isolated buildngs. Journal of Japan Association for Earthquake Engineering 4 (3):259–64. doi:10.5610/jaee.4.3_259.
  • Nishimoto, K., H. Nakamura, H. Hasegawa, and N. Wakita. 2016. Bearing stress and velocity dependency of spherical sliding bearing through full-scale tests. Paper No. 21223. AIJ, Fukuoka, Japan, August 24–26 .
  • NS-SSB. n.d. https://www.eng.nipponsteel.com/steelstructures/product/base_isolation/nsssb/.
  • PEER. n.d. https://ngawest2.berkeley.edu/.
  • Ponzo, F. C., A. D. Cesare, G. Leccese, and D. Nigro. 2017. Shake table testing on restoring capability of double concave friction pendulum seismic isolation systems. Earthquake Engineering & Structural Dynamics 46 (14):2337–53. doi:10.1002/eqe.2907.
  • Ponzo, F. C., A. D. Cesare, A. Telesca, A. Pavese, and M. Furinghetti. 2021. Advanced modelling and risk analysis of rc buildings with sliding isolation systems designed by the Italian seismic code. Applied Sciences 11 (4):1938. doi:10.3390/app11041938.
  • Quaglini, V., E. Gandelli, P. Dubini, G. Vazzana, and G. Farina. 2014. Re-centring capability of friction pendulum system: Experimental investigation. Proceedings of the 2nd European conference on earthquake engineering and seismology, Istanbul, TK.
  • Shimazaki, D., and K. Nakagawa. 2015. Seismic isolation systems incorporating with RC core walls and precast concrete perimeter frames-Shimizu Corporation Tokyo Headquarter. International Journal of High-Rise Buildings 4 (3):181–89.
  • Takanori, I., N. Masashi, and K. Shoichi. 2018. 21491 Experimental and analytical study on spherical sliding bearing subjected to bidirectional excitation part 1 bidirectional loading tests and verification of mechanical model. Architectural Institute of Japan, Construction II:981–82.
  • Warn, G. P., and A. S. Whittaker. 2004. Performance estimates in seismically isolated bridge structures. Engineering Structures 26 (9):1261–78. doi:10.1016/j.engstruct.2004.04.006.