229
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Visual Data-Informed Fiber Beam-Column Model for the Analysis of Residual Hysteretic Behavior of Post-Earthquake Damaged RC Columns

, &
Pages 946-971 | Received 04 Jan 2023, Accepted 12 Jun 2023, Published online: 19 Jun 2023

References

  • Abdelnaby, A. 2018. Fragility curves for RC frames subjected to Tohoku mainshock-aftershocks sequences. Journal of Earthquake Engineering 22 (5):902–20. doi:10.1080/13632469.2016.1264328.
  • Alwashali, H., M. Maeda, Y. Ogata, N. Aizawa, and K. Tsurugai. 2021. Residual seismic performance of damaged reinforced concrete walls. Engineering Structures 243:112673. doi:10.1016/j.engstruct.2021.112673.
  • Burton, H., and G. G. Deierlein. 2018. Integrating visual damage simulation, virtual inspection, and collapse capacity to evaluate post-earthquake structural safety of buildings. Earthquake Engineering & Structural Dynamics 47 (2):294–310. doi:10.1002/eqe.2951.
  • Cai, Z., D. Wang, and Z. Wang. 2017. Full-scale seismic testing of concrete building columns reinforced with both steel and CFRP bars. Composite Structures 178:195–209. doi:10.1016/j.compstruct.2017.06.020.
  • Cai, E., Y. Zhang, X. Lu, X. Ji, Y. Li, J. Li, X. Song, and H. Zhang. 2022. Estimating small structural motions based on sparsity enforcing. Computer-Aided Civil and Infrastructure Engineering 38 (9):1199–216. doi:10.1111/mice.12957.
  • Calabrese, A., J. P. Almeida, and R. Pinho. 2010. Numerical issues in distributed inelasticity modeling of RC frame elements for seismic analysis. Journal of Earthquake Engineering 14 (suppl.1):38–68. doi:10.1080/13632461003651869.
  • Cheng, Q., W. Liao, Y. Fei, Y. Tian, X. Lu, W. Zhang, F. Ghahari, A. Kurtulus, and E. Taciroglu. 2022. A cost-benefit analysis of sensor quality and spatial density for rapid regional post-event seismic damage assessment: Application to Istanbul. Soil Dynamics and Earthquake Engineering 163:107495. doi:10.1016/j.soildyn.2022.107495.
  • Chida, H., and N. Takahashi. 2020. Study on image diagnosis of timber houses damaged by earthquake using deep learning. Journal of Structural and Construction Engineering 85 (770):529–38.
  • Chiu, C., and C. Arista. 2017. Serviceability-related reliability for mainshock-damaged reinforced concrete piers considering the aftershock-induced seismic hazards. Natural Hazards 87 (3):1333–59. doi:10.1007/s11069-017-2820-8.
  • Di Trapani, F., and M. Malavisi. 2019. Seismic fragility assessment of infilled frames subject to mainshock/aftershock sequences using a double incremental dynamic analysis approach. Bulletin of Earthquake Engineering 17 (1):211–35. doi:10.1007/s10518-018-0445-2.
  • FEMA. 1998. Evaluation of earthquake damaged concrete and masonry wall buildings (FEMA 306). Washington: Federal Emergency Management Agency.
  • Feng, D., and X. Ren. 2017. Enriched force-based frame element with evolutionary plastic hinge. Journal of Structural Engineering 143 (10):06017005.1–06017005.7. doi:10.1061/(ASCE)ST.1943-541X.0001871.
  • Feng, D., X. Ren, and J. Li. 2016. Implicit gradient delocalization method for force-based frame element. Journal of Structural Engineering 142 (2):04015122. doi:10.1061/(ASCE)ST.1943-541X.0001397.
  • Furtado, A., H. Rodrigues, H. Varum, and A. Arˆede. 2018. Mainshock-aftershock damage assessment of infilled RC structures. Engineering Structures 175:645–60. doi:10.1016/j.engstruct.2018.08.063.
  • Gao, Y., and K. Mosalam. 2018. Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33 (9):748–68. doi:10.1111/mice.12363.
  • Giacco, G., G. Mariniello, S. Marrone, D. Asprone, and C. Sansone. 2022. Toward a system for post-earthquake safety evaluation of masonry buildings. Lecture Notes in Computer Science 13232: 312–23. doi:10.1007/978-3-031-06430-2_26.
  • Gill, W. 1979. Ductility of rectangular reinforced concrete columns with axial load. PhD diss., University of Canterbury.
  • Iervolino, I., E. Chioccarelli, and A. Suzuki. 2020. Seismic damage accumulation in multiple mainshock–aftershock sequences. Earthquake Engineering & Structural Dynamics 49 (10):1007–27. doi:10.1002/eqe.3275.
  • Jang, Y. 2021. Cascaded deep learning network for post-earthquake bridge serviceability assessment. PhD diss., South Dakota State University.
  • Ji, X., Z. Miao, and R. Kromanis. 2020. Vision-based measurements of deformations and cracks for RC structure tests. Engineering Structures 212:110508. doi:10.1016/j.engstruct.2020.110508.
  • Karami, F., and M. Izadpanah. 2021. Incremental inelastic dynamic damage analysis of MRRCFs infilled with masonry panel. Journal of Building Engineering 44:103282. doi:10.1016/j.jobe.2021.103282.
  • Karsan, I., and J. Jirsa. 1969. Behavior of concrete under compressive loadings. Journal of the Structural Division 95 (12):2543–64. doi:10.1061/JSDEAG.0002424.
  • Kent, D., and R. Park. 1971. Flexural members with confined concrete. Journal of the Structural Division 97 (7):1969–90. doi:10.1061/JSDEAG.0002957.
  • Liang, X. 2019. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization. Computer-Aided Civil and Infrastructure Engineering 34 (5):415–30. doi:10.1111/mice.12425.
  • Liao, W., Y. Fei, F. Ghahari, W. Zhang, P.-Y. Chen, A. Kurtulus, C.-H. Yen, Q. Cheng, X. Lu, E. Taciroglu, et al. 2022. Influence of accelerometer type on uncertainties in recorded ground motions and seismic damage assessment. Bulletin of Earthquake Engineering 20 (9):4419–39. doi:10.1007/s10518-022-01461-5.
  • Li, L., G. Luo, Z. Wang, Y. Zhang, and Y. Zhuge. 2021. Prediction of residual behaviour for post-earthquake damaged reinforced concrete column based on damage distribution model. Engineering Structures 234:111927. doi:10.1016/j.engstruct.2021.111927.
  • Li, L., W. Wang, and P. Shi. 2022. Modelling catastrophic degradation of flexural-dominated RC columns at ultimate displacements based on fibre beam-column model. Journal of Building Engineering 45:103476. doi:10.1016/j.jobe.2021.103476.
  • Lu, X., Q. Cheng, Z. Xu, and C. Xiong. 2021. Regional seismic-damage prediction of buildings under mainshock—aftershock sequence. Frontiers of Engineering Management 8 (1):122–34. doi:10.1007/s42524-019-0072-x.
  • Lu, X., F. McKenna, Q. Cheng, Z. Xu, X. Zeng, and S. A. Mahin. 2020. An open-source framework for regional earthquake loss estimation using the city-scale nonlinear time history analysis. Earthquake Spectra 36 (2):806–31. doi:10.1177/8755293019891724.
  • Mander, J., M. Priestley, and R. Park. 1988. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering 114 (8):1804–26. doi:10.1061/(ASCE)0733-9445(1988)114:8(1804).
  • Marder, K. J. 2018. Post-Earthquake Residual Capacity of Reinforced Concrete Plastic Hinges. Dissertation. The University of Auckland.
  • Marder, K., K. Elwood, C. Motter, and G. Clifton. 2020. Post-earthquake assessment of moderately damaged reinforced concrete plastic hinges. Earthquake Spectra 36 (1):299–321. doi:10.1177/8755293019878192.
  • Miao, Z., X. Ji, T. Okazaki, and N. Takahashi. 2021. Pixel-level multicategory detection of visible seismic damage of reinforced concrete components. Computer-Aided Civil and Infrastructure Engineering 36 (5):620–37. doi:10.1111/mice.12667.
  • Miao, Z., X. Ji, M. Wu, and X. Gao. 2022. Deep learning-based evaluation for mechanical property degradation of seismically damaged RC columns. Earthquake Engineering & Structural Dynamics 52 (8):2498–519. doi:10.1002/eqe.3749.
  • Park, Y., A. Ang, and Y. Wen. 1987. Damage-limiting aseismic design of buildings. Earthquake Spectra 3 (1):1–26. doi:10.1193/1.1585416.
  • Raghunandan, M., A. Liel, and N. Luco. 2015. Aftershock collapse vulnerability assessment of reinforced concrete frame structures. Earthquake Engineering & Structural Dynamics 44 (3):419–39. doi:10.1002/eqe.2478.
  • Saribas, I., C. Goksu, E. Binbir, and A. Ilki. 2019. Seismic performance of full-scale RC columns containing high proportion recycled aggregate. Bulletin of Earthquake Engineering 17 (11):6009–37. doi:10.1007/s10518-019-00687-0.
  • Sezen, H. 2002. Seismic behavior and modelling of reinforced concrete building columns. PhD diss., University of California.
  • Shi, F., G. Saygili, O. Ozbulut, and Y. Zhou. 2020. Risk-based mainshock-aftershock performance assessment of SMA braced steel frames. Engineering Structures 212:110506. doi:10.1016/j.engstruct.2020.110506.
  • Shokrabadi, M., and H. Burton. 2018. Risk-based assessment of aftershock and mainshock-aftershock seismic performance of reinforced concrete frames. Structural Safety 73:64–74. doi:10.1016/j.strusafe.2018.03.003.
  • Todorov, B. 2021. Seismic performance evaluation of reinforced concrete bridge piers considering post-earthquake capacity degradation. PhD diss., Lakehead University.
  • Trevlopoulos, K., P. Gu´eguen, A. Helmstetter, and F. Cotton. 2020. Earthquake risk in reinforced concrete buildings during aftershock sequences based on period elongation and operational earthquake forecasting. Structural Safety 33:101922. doi:10.1016/j.strusafe.2020.101922.
  • Wang, W., L. Li, and Z. Qu. 2023. Machine learning-based collapse prediction for post-earthquake damaged RC columns under subsequent earthquakes. Soil Dynamics and Earthquake Engineering 172:108036. doi:10.1016/j.soildyn.2023.108036.
  • Wang, Z., L. Li, Y. Zhang, and S.-S. Zheng. 2019. Reinforcement model considering slip effect. Engineering Structures 198:109493. doi:10.1016/j.engstruct.2019.109493.
  • Wright, T. 2015. Full-scale seismic testing of a reinforced concrete moment frame using mobile shakers. PhD diss., Georgia Institute of Technology.
  • Xie, L., X. Lu, H. Guan, and X. Lu. 2015. Experimental study and numerical model calibration for earthquake-induced collapse of RC frames with emphasis on key columns, joints, and the overall structure. Journal of Earthquake Engineering 19 (8):1320–44. doi:10.1080/13632469.2015.1040897.
  • Xie, X., Z. Qu, H. Fu, and L. Zhang. 2021. Effect of prior in-plane damage on the out-of-plane behavior of masonry infill walls. Engineering Structures 226:111380. doi:10.1016/j.engstruct.2020.111380.
  • Xiong, C., Q. Li, and X. Lu. 2020. Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network. Automation in Construction 109:102994. doi:10.1016/j.autcon.2019.102994.
  • Yu, X., K. Dai, Z. Zhou, D. Lu, and F. Ma. 2019. Damage assessment of a reinforced concrete frame structures subjected to mainshock-aftershock sequences. Journal of Building Structures 40 (3):127–33.
  • Yu, X., D. Lu, and B. Li. 2017. Relating seismic design level and seismic performance: A fragility based investigation of RC moment-resisting frame buildings in China. ASCE Journal of Performance of Constructed Facilities 31 (5):04017075. doi:10.1061/(ASCE)CF.1943-5509.0001069.
  • Yu, X., Y. Qiao, K. Dai, J. Tao, and D. Lu. 2019. Incremental damage analysis of nonlinear single-degree-freedom systems subjected to mainshock-aftershock earthquake sequences. Engineering Mechanics 36 (3):121–30.
  • Yu, X., Z. Zhou, W. Du, and D. Lu. 2021. Fragility surface assessment for reinforced concrete structures under mainshock-aftershock sequences. Earthquake Engineering & Structural Dynamics 50 (15):3981–4000. doi:10.1002/eqe.3542.
  • Zhou, Y., L. Chen, and L. Long. 2023. Modeling cyclic behavior of squat reinforced concrete walls exposed to acid deposition. Journal of Building Engineering 63:105432. doi:10.1016/j.jobe.2022.105432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.