250
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Performance Evaluation of Distributed Extended KDamper Devices for Seismic Protection of Mid-Rise Building Structures

ORCID Icon, , , &
Pages 972-997 | Received 28 Nov 2022, Accepted 06 Jun 2023, Published online: 25 Jun 2023

References

  • Abé, M., and Y. Fujino. 1994. Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthquake Engineering & Structural Dynamics 23 (8):813–35. doi:10.1002/EQE.4290230802.
  • Acar, M. A., and C. Yilmaz. 2013. Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism. Journal of Sound and Vibration 332 (2):231–45. doi:10.1016/j.jsv.2012.09.007.
  • Andreas, P., K. Moris, A. Ioannis, and F. Lina. 2020. Acoustic performance evaluation of a panel utilizing negative stiffness mounting for low frequency noise control. International Journal of Offshore and Polar Engineering 4093–110. doi:10.47964/1120.9335.19276.
  • Antoniadis, I. A., S. A. Kanarachos, K. Gryllias, and I. E. Sapountzakis. 2018. Kdamping: A stiffness based vibration absorption concept. JVC/Journal of Vibration and Control 24 (3):588–606. doi:10.1177/1077546316646514.
  • Ayorinde, E. O., and G. B. Warburton. 1980. Minimizing structural vibrations with absorbers. Earthquake Engineering & Structural Dynamics 8 (3):219–36. doi:10.1002/EQE.4290080303.
  • Bakre, S. V., and R. S. Jangid. 2007. Optimum parameters of tuned mass damper for damped main system. Structural Control & Health Monitoring 14 (3):448–70. doi:10.1002/STC.166.
  • Bhowmik, K., and N. Debnath. 2021. On stochastic design of negative stiffness integrated tuned mass damper (NS-TMD). Journal of Vibration Engineering & Technologies 9 (8):2197–211. doi:10.1007/s42417-021-00356-0.
  • Cheng, Z., A. Palermo, Z. Shi, and A. Marzani. 2020. Enhanced tuned mass damper using an inertial amplification mechanism. Journal of Sound and Vibration 475 (June):115267. doi:10.1016/J.JSV.2020.115267.
  • Chen, G., and W. Jingning. 2001. Optimal placement of multiple tune mass dampers for seismic structures. Journal of Structural Engineering 127 (9):1054–62. doi:10.1061/(ASCE)0733-9445(2001)127:9(1054).
  • Chen, H., B. Kaiming, Y. Liu, and P. Tan. 2022. Performance evaluation of multiple tuned inerter-based dampers for seismic induced structural vibration control. Structural Control & Health Monitoring 29 (1):e2860. doi:10.1002/stc.2860.
  • Chowdhury, S., A. Banerjee, and S. Adhikari. 2022. Optimal negative stiffness inertial-amplifier-base-isolators: exact closed-form expressions. International Journal of Mechanical Sciences 218 (March):107044. doi:10.1016/J.IJMECSCI.2021.107044.
  • Chunxiang, L. 2002. Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF. Earthquake Engineering & Structural Dynamics 31 (4):897–919. doi:10.1002/EQE.128.
  • Clark, A. J. 1988. Multiple passive tuned mass damper for reducing earthquake induced building motion. 9th World Conference in Earthquake Engineering, Tokyo-Kyoto, Japan.
  • Dadkhah, M., R. Kamgar, H. Heidarzadeh, A. Jakubczyk-Galczyńska, and R. Jankowski. 2020. Improvement of performance level of steel moment-resisting frames using tuned mass damper system. Applied Sciences, 10 (10):3403. doi:10.3390/APP10103403.
  • DeDomenico, D., and G. Ricciardi. 2018. Earthquake-resilient design of base isolated buildings with TMD at basement: Application to a case study. Soil Dynamics and Earthquake Engineering 113 (October):503–21. doi:10.1016/j.soildyn.2018.06.022.
  • Den Hartog, J. P. 1956. Mechanical vibrations. 4th ed. New York: McGraw-Hill. doi:10.1038/161503c0.
  • Elias, S., and V. Matsagar. 2015. Optimum tuned mass damper for wind and earthquake response control of high-rise building. Advances in Structural Engineering: Dynamics Two:751–1616. doi:10.1007/978-81-322-2193-7.
  • Elias, S., V. Matsagar, and T. K. Datta. 2016. Effectiveness of distributed tuned mass dampers for multi-mode control of chimney under earthquakes. Engineering Structures 124: 1–16. doi:10.1016/j.engstruct.2016.06.006.
  • Elias, S., V. Matsagar, and T. K. Datta. 2017. Distributed tuned mass dampers for multi-mode control of benchmark building under seismic excitations. Journal of Earthquake Engineering 23 (7):1137–72. doi:10.1080/13632469.2017.1351407.
  • Emami, F., and M. Tayefeh Mohammad Ali. 2022. Evaluation of seismic response of the straight concrete bridges with three methods of passive control (K-Damper, TMD and LRB). Journal of Structural & Construction Engineering 8 (Special Issue 4):46–60. doi:10.22065/JSCE.2021.228042.2129.
  • Etedali, S., and H. Rakhshani. 2018. Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations. Alexandria Engineering Journal 57 (4):3205–18. doi:10.1016/J.AEJ.2018.01.009.
  • Fahim, S., B. Mohraz, A. Taylor, and R. Chung. 1998. A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics 26 (6):617–35. doi:10.1002/(SICI)1096-9845(199706)26:6<617:AID-EQE664>3.0.CO;2-Z.
  • Farag, M. M. N., S. S. F. Mehanny, and M. M. Bakhoum. 2015. Establishing optimal gap size for precast beam bridges with a buffer-gap-elastomeric bearings system. Earthquake and Structures 9 (1):195–219. doi:10.12989/eas.2015.9.1.195.
  • Frahm, H. 1911. Device for damping of bodies. U.S. Patent.
  • Giaralis, A., and A. A. Taflanidis. 2018. Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria. Structural Control and Health Monitoring 25 (2):e2082. doi:10.1002/stc.2082.
  • Hadi, M. N. S., and Y. Arfiadi. 1998. Optimum design of absorber for MDOF structures. Journal of Structural Engineering 124 (11):1272–80. doi:10.1061/(ASCE)0733-9445(1998)124:11(1272).
  • Hoang, N., Y. Fujino, and P. Warnitchai. 2008. Optimal tuned mass damper for seismic applications and practical design formulas. Engineering Structures 30 (3):707–15. doi:10.1016/J.ENGSTRUCT.2007.05.007.
  • Huan, L., L. Yancheng, and L. Jianchun. 2020. Negative stiffness devices for vibration isolation applications: A review. Advances in Structural Engineering 23 (8):1739–55. doi:10.1177/1369433219900311.
  • Igusa, T., and K. Xu. 1994. Vibration control using multiple tuned mass dampers. Journal of Sound and Vibration 175 (4):491–503. doi:10.1006/JSVI.1994.1341.
  • Jangid, R. S. 2021. Optimum tuned inerter damper for base-isolated structures. Journal of Vibration Engineering & Technologies 9 (7):1483–97. doi:10.1007/s42417-021-00309-7.
  • Jiang, S., B. Kaiming, M. Ruisheng, Q. Han, and D. Xiuli. 2023. Influence of spatially varying ground motions on the seismic responses of bridge structures with KDampers. Engineering Structures 277 (February):115461. doi:10.1016/J.ENGSTRUCT.2022.115461.
  • Kalderon, M., A. Mantakas, and I. Antoniadis. 2023. Dynamic modelling and experimental testing of a dynamic directional amplification mechanism for vibration mitigation. Journal of Vibration Engineering & Technologies. doi:10.1007/s42417-023-00925-5.
  • Kalderon, M., A. Paradeisiotis, and I. Antoniadis. 2021. A meta-structure for low-frequency acoustic treatment based on a KDamper-inertial amplification concept. Proceedings of Euronoise 2021, 1333–43.
  • Kalogerakou, M. E., K. A. Kapasakalis, I. A. Antoniadis, and E. J. Sapountzakis. 2023. Vertical seismic protection of structures with inerter-based negative stiffness absorbers. Bulletin of Earthquake Engineering 21 (3):1439–80. doi:10.1007/s10518-021-01284-w.
  • Kalogerakou, M., A. Paradeisiotis, and I. Antoniadis. 2023. Vertical seismic absorber utilizing inertance and negative stiffness implemented with gas springs. In Earthquake engineering and engineering vibration, 1–17. Institute of Engineering Mechanics (IEM). doi:10.1007/S11803-023-2163-2/METRICS.
  • Kamgar, R., F. Gholami, H. R. Zarif Sanayei, and H. Heidarzadeh. 2020. Modified tuned liquid dampers for seismic protection of buildings considering soil–structure interaction effects. Iranian Journal of Science and Technology - Transactions of Civil Engineering 44 (1):339–54. doi:10.1007/s40996-019-00302-x.
  • Kamgar, R., H. Heidarzadeh, and M. R. Babadaei Samani. 2021. Evaluation of buckling load and dynamic performance of steel shear wall retrofitted with strips made of shape memory alloy. Scientia Iranica 28 (3):1096–108. doi:10.24200/SCI.2020.52994.2991.
  • Kamgar, R., and M. R. Babadaei Samani. 2021. Numerical study for evaluating the effect of length-to-height ratio on the behavior of concrete frame retrofitted with steel infill plates. Practice Periodical on Structural Design & Construction 27 (1):04021062. doi:10.1061/(ASCE)SC.1943-5576.0000632.
  • Kamgar, R., P. Samea, and M. Khatibinia. 2018. Optimizing parameters of Tuned mass damper subjected to critical earthquake. The Structural Design of Tall & Special Buildings 27 (7):e1460. doi:10.1002/TAL.1460.
  • Kampitsis, A., K. Kapasakalis, and L. Via-Estrem. 2022. An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems. Engineering Structures 254 (March):113859. doi:10.1016/J.ENGSTRUCT.2022.113859.
  • Kangming, X., and T. Igusa. 1992. Dynamic characteristics of multiple substructures with closely spaced frequencies. Earthquake Engineering & Structural Dynamics 21 (12):1059–70. doi:10.1002/eqe.4290211203.
  • Kapasakalis, K. A., I. A. Antoniadis, and E. J. Sapountzakis. 2019. Implementation of the KDamper concept for base isolation to a typical concrete building structure. Proceedings of the2th International Congress on Mechanics (12HSTAM2019), Thessaloniki, Greece, 22–25 September.
  • Kapasakalis, K. A., I. A. Antoniadis, and E. J. Sapountzakis. 2020. Performance assessment of the KDamper as a seismic absorption base. Structural Control and Health Monitoring 27 (4):4. doi:10.1002/stc.2482.
  • Kapasakalis, K. A., I. A. Antoniadis, and E. J. Sapountzakis. 2021a. Constrained optimal design of seismic base absorbers based on an extended KDamper concept. Engineering Structures 226:111312. doi:10.1016/j.engstruct.2020.111312.
  • Kapasakalis, K. A., I. A. Antoniadis, and E. J. Sapountzakis. 2021b. Feasibility assessment of stiff seismic base absorbers. Journal of Vibration Engineering & Technologies 1–17. August. Springer. doi:10.1007/S42417-021-00362-2.
  • Kapasakalis, K. A., I. A. Antoniadis, and E. J. Sapountzakis. 2021c. STIFF vertical seismic absorbers. JVC/Journal of Vibration and Control 1–13. doi:10.1177/10775463211001624.
  • Kapasakalis, K. A., I. A. Antoniadis, and E. J. Sapountzakis. 2022. STIFF vertical seismic absorbers. JVC/Journal of Vibration and Control 28 (15–16):1937–49. doi:10.1177/10775463211001624.
  • Kareem, A. 1983. Mitigation of wind induced motion of tall buildings. Journal of Wind Engineering and Industrial Aerodynamics 11 (1–3):273–84. doi:10.1016/0167-6105(83)90106-X.
  • Kareem, A., T. Kijewski, and Y. Tamura. 1999. Mitigation of motions of tall buildings with specific examples of recent applications. Wind and Structures, an International Journal 2 (3):201–51. doi:10.12989/WAS.1999.2.3.201.
  • Kareem, A., and S. Kline. 1995. Performance of multiple mass dampers under random loading. Journal of Structural Engineering 121 (2):348–61. doi:10.1061/(ASCE)0733-9445(1995)121:2(348).
  • Kelly, J. M. 1999. The role of damping in seismic isolation. Earthquake Engineering & Structural Dynamics 28 (1):3–20. doi:10.1002/(SICI)1096-9845(199901)28:1<3:AID-EQE801>3.0.CO;2-D.
  • Khatibinia, M., H. Gholami, and R. Kamgar. 2018. Optimal design of tuned mass dampers subjected to continuous stationary critical excitation. International Journal of Dynamics and Control 6 (3):1094–104. doi:10.1007/s40435-017-0386-7.
  • Mane, P. U., and G. R. Kondekar. 2021. Experimental study on vibration control using shape memory alloy based vibration absorber. Materials Today: Proceedings 45 (January):2812–17. doi:10.1016/J.MATPR.2020.11.802.
  • Mantakas, A. G., K. A. Kapasakalis, A. E. Alvertos, I. A. Antoniadis, and E. J. Sapountzakis. 2022. A negative stiffness dynamic base absorber for seismic retrofitting of residential buildings. Structural Control & Health Monitoring 29 (12):e3127. doi:10.1002/STC.3127.
  • Marian, L., and A. Giaralis. 2014. Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probabilistic Engineering Mechanics 38:156–64. doi: 10.1016/j.probengmech.2014.03.007.
  • Moris, K., A. Mantakas, A. Paradeisiotis, I. Antoniadis, and E. J. Sapountzakis. 2022. Locally resonant metamaterials utilizing dynamic directional amplification: An application for seismic mitigation. Applied Mathematical Modelling 110 (October):1–16. doi:10.1016/J.APM.2022.05.037.
  • Naeim, F. 1998. Performance of 20 extensively-instrumented buildings during the994 Northridge earthquake. The Structural Design of Tall Buildings 7 (3):179–94. doi:10.1002/(SICI)1099-1794(199809)7:3<179:AID-TAL113>3.0.CO;2-U.
  • Naeim, F., and J. M. Kelly. 1999. Design of seismic isolated structures: From theory to practice. John Wiley & Sons, Inc. doi:10.1002/9780470172742.
  • Nagarajaiah, S., and E. Sonmez. 2007. Structures with semiactive variable stiffness single/multiple tuned mass dampers. Journal of Structural Engineering 133 (1):67–77. doi:10.1061/(asce)0733-9445(2007)133:1(67).
  • Paradeisiotis, A., M. Kalderon, and I. Antoniadis. 2021. Advanced Negative stiffness absorber for low-frequency noise insulation of panels. AIP Advances 11 (6):065003. doi:10.1063/5.0045937.
  • RadmardRahmani, H., and C. Könke. 2019. Seismic control of tall buildings using distributed multiple tuned mass dampers. Advances in Civil Engineering 2019:1–19. doi:10.1155/2019/6480384.
  • Salimi, M., R. Kamgar, and H. Heidarzadeh. 2021. An evaluation of the advantages of friction TMD over conventional TMD. Innovative Infrastructure Solutions 6 (2):1–12. doi:10.1007/s41062-021-00473-5.
  • Singh, M. P., E. E. Matheu, and L. E. Suarez. 1998. Active and semi-active control of structures under seismic excitation. Earthquake Engineering & Structural Dynamics 26 (2):193–213. doi:10.1002/(SICI)1096-9845(199702)26:2<193::AID-EQE634>3.0.CO;2-%23.
  • Sladek, J. R., and R. E. Klingner. 1983. Effect of TunedMass dampers on seismic response. Journal of Structural Engineering 109 (8):2004–09. doi:10.1061/(ASCE)0733-9445(1983)109:8(2004).
  • Smith, M. C. 2002. Synthesis of mechanical networks: The inerter. IEEE transactions on automatic control 47 (10). doi:10.1109/TAC.2002.803532.
  • Suresh, L., and K. M. Mini. 2019. Effect of multiple tuned mass dampers for vibration control in high-rise buildings. Practice Periodical on Structural Design & Construction 24 (4):1–13. doi:10.1061/(asce)sc.1943-5576.0000453.
  • Symans, M. D., F. A. Charney, A. S. Whittaker, M. C. Constantinou, C. A. Kircher, M. W. Johnson, and R. J. McNamara. 2007. Energy dissipation systems for seismic applications: Current practice and recent developments. Journal of Structural Engineering 134 (1):3–21. doi:10.1061/(asce)0733-9445(2008)134:1(3).
  • Syrimi, P., E. Sapountzakis, G. Tsiatas, and I. Antoniadis. 2017. Parameter optimization of the KDamper concept in seismic isolation of bridges using harmony search algorithm. Procceding of the 6th COMPDYN 2017, Rhodes Island, Greece, 37–51. doi:10.7712/120117.5408.17764.
  • Taniguchi, T., A. Der Kiureghian, and M. Melkumyan. 2008. Effect of tuned mass damper on displacement demand of base-isolated structures. Engineering Structures 30 (12):3478–88. doi:10.1016/j.engstruct.2008.05.027.
  • Warburton, G. B. 1982. Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics 10 (3):381–401. doi:10.1002/EQE.4290100304.
  • Warn, G. P., and K. L. Ryan. 2012. A review of seismic isolation for buildings: Historical development and research needs. Buildings 2 (3):300–25. doi:10.3390/buildings2030300.
  • Weber, B., and G. Feltrin. 2010. Assessment of long-term behavior of tuned mass dampers by system identification. Engineering Structures 32 (11):3670–82. doi:10.1016/j.engstruct.2010.08.011.
  • Woo Geem, Z., J. Hoon Kim, and G. V. Loganathan. 2001. A new heuristic optimization algorithm: Harmony search. Simulation 76 (2):60–68. doi:10.1177/003754970107600201.
  • Xiang, P., and A. Nishitani. 2013. Seismic vibration control of building structures with multiple tuned mass damper Fl oors integrated. doi:10.1002/eqe.
  • Xiang, P., and A. Nishitani. 2014. Optimum design for more effective tuned mass damper system and its application to base-isolated buildings. Structural Control and Health Monitoring 21 (1):98–114. doi:10.1002/stc.1556.
  • Yamaguchi, H., and N. Harnpornchai. 1993. Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations. Earthquake Engineering & Structural Dynamics 22 (1):51–62. doi:10.1002/eqe.4290220105.
  • Zuo, H., B. Kaiming, and H. Hao. 2017. Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards. Engineering Structures 141 (June):303–15. doi:10.1016/J.ENGSTRUCT.2017.03.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.