132
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Simplified Approach to Estimate Seismic Vulnerability and Damage Scenarios Including Site Effects. Application to the Historical Centre of Horta, Azores, Portugal

, , , &
Pages 1892-1913 | Received 13 Oct 2022, Accepted 28 Aug 2023, Published online: 12 Sep 2023

References

  • Afak, E. 2001. Local site effects and dynamic soil behavior. Soil Dynamics and Earthquake Engineering 21 (5):453–58. doi:10.1016/S0267-7261(01)00021-5.
  • Atkinson, G. M., and S. L. I. Kaka. 2007. Relationships between felt intensity and instrumental ground motion in the central United States and California. Bulletin of the Seismological Society of America 97 (2):497–510. doi:10.1785/0120060154.
  • Azizi-Bondarabadi, H., N. Mendes, P. B. Lourenço, and N. H. Sadeghi. 2016. Empirical seismic vulnerability analysis for masonry buildings based on school buildings survey in Iran. Bulletin of Earthquake Engineering 14 (11):3195–229. doi:10.1007/s10518-016-9944-1.
  • Basaglia, A., A. Aprile, E. Spacone, and F. Pilla. 2018. Performance-based seismic risk assessment of urban systems. International Journal of Architectural Heritage 12 (7–8):1131–49. doi:10.1080/15583058.2018.1503371.
  • Bianconi, F., G. P. Salachoris, F. Clementi, and S. Lenci. 2020. A genetic algorithm procedure for the automatic updating of FEM based on ambient vibration tests. Sensors 20 (11):3315. doi:10.3390/s20113315.
  • Biglari, M., M. D’Amato, and A. Formisano. 2021. Rapid seismic vulnerability and risk assessment of Kermanshah historic mosques. The Open Civil Engineering Journal 15 (1):135–48. doi:10.2174/1874149502115010135.
  • Biglari, M., and A. Formisano. 2021. Urban seismic risk analysis using empirical fragility curves for Kerend-e-Gharb after Mw 7.3, 2017 Iran Earthquake.
  • Bindi, D., F. Cotton, and S. Parolai. 2021. Site effects assessment for risk mitigation purposes: Insights from recent European projects. Engineering Geology 291:106047. doi:10.1016/j.enggeo.2021.106047.
  • Boore, D. M., and W. B. Joyner. 1997. Site amplifications for generic rock sites. Bulletin of the Seismological Society of America 87 (2):327–41. doi:10.1785/BSSA0870020327.
  • Bozorgnia, Y., M. M. Hachem, and K. W. Campbell. 2010. Ground motion prediction equation (“attenuation relationship”) for inelastic response spectra. Earthquake Spectra 26 (1):1–23. doi:10.1193/1.3281182.
  • Bramerini, F., and A. Lucantoni. 2000. Analysis of different earthquake damage scenarios for emergency planning in Italy. Management Information Systems 45.
  • Brando, G., A. Pagliaroli, G. Cocco, and F. Di Buccio. 2020. Site effects and damage scenarios: The case study of two historic centers following the 2016 central Italy earthquake. Engineering Geology 272:105647. doi:10.1016/j.enggeo.2020.105647.
  • Brando, G., D. Rapone, E. Spacone, M. S. O’Banion, M. J. Olsen, A. R. Barbosa, M. Faggella, R. Gigliotti, D. Liberatore, S. Russo, et al. 2017. Damage reconnaissance of unreinforced masonry bearing wall buildings after the 2015 Gorkha, Nepal, earthquake. Earthquake Spectra 33 (1_suppl):243–73. doi:10.1193/010817EQS009M.
  • Brookshire, D. S., S. E. Chang, H. Cochrane, R. A. Olson, A. Rose, and J. Steenson. 1997. Direct and indirect economic losses from earthquake damage. Earthquake Spectra 13 (4):683–701. doi:10.1193/1.1585975.
  • Calvi, G. M., R. Pinho, G. Magenes, J. J. Bommer, L. F. Restrepo-Vélez, and H. Crowley. 2006. Development of seismic vulnerability assessment methodologies over the past 30 years. ISET Journal of Earthquake Technology 43 (3):75–104.
  • Chieffo, N., and A. Formisano. 2019a. Geo-hazard-based approach for the estimation of seismic vulnerability and damage scenarios of the old city of senerchia (Avellino, Italy). Geosciences 9 (2):59. doi:10.3390/geosciences9020059.
  • Chieffo, N., and A. Formisano. 2019b. The influence of geo-hazard effects on the physical vulnerability assessment of the built heritage: An application in a district of Naples. Buildings 9 (1):26. doi:10.3390/buildings9010026.
  • Chieffo, N., and A. Formisano. 2020. Induced seismic-site effects on the vulnerability assessment of a historical centre in the Molise region of Italy: Analysis method and real behaviour calibration based on 2002 earthquake. Geosciences 10 (1):21. doi:10.3390/geosciences10010021.
  • Chieffo, N., A. Formisano, and T. Miguel Ferreira. 2019. Damage scenario-based approach and retrofitting strategies for seismic risk mitigation: An application to the historical centre of Sant’Antimo (Italy). European Journal of Environmental and Civil Engineering. doi:10.1080/19648189.2019.1596164.
  • Clementi, F. 2021. Failure analysis of Apennine masonry churches severely damaged during the 2016 central Italy seismic sequence. Buildings 11 (2):58. doi:10.3390/buildings11020058.
  • Costa, A. 2002. Determination of mechanical properties of traditional masonry walls in dwellings of Faial Island, Azores. Earthquake Engineering and Structural Dynamics 31 (7):1361–82. doi:10.1002/eqe.167.
  • D’Ayala, D. F., R. Spence, C. Oliveira, and A. Pomonis. 1997. Earthquake loss estimation for Europe’s historic town centres. Earthquake Spectra 13:773–93. doi:10.1193/1.1585980.
  • Di Ludovico, M., A. Prota, C. Moroni, G. Manfredi, and M. Dolce. 2017. Reconstruction process of damaged residential buildings outside historical centres after the L’Aquila earthquake: Part II—“heavy damage” reconstruction. Bulletin of Earthquake Engineering 15 (2):693–729. doi:10.1007/s10518-016-9979-3.
  • Dolce, M., A. Kappos, A. Masi, G. Penelis, and M. Vona. 2006. Vulnerability assessment and earthquake damage scenarios of the building stock of potenza (Southern Italy) using Italian and Greek methodologies. Engineering Structures 28 (3):357–71. doi:10.1016/j.engstruct.2005.08.009.
  • Eurocode, C. 8, 2004. Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings (EN 1998-1: 2004). Vol. 1. European Committee for Normalization, Brussels.
  • Ferrante, A., E. Giordano, F. Clementi, G. Milani, and A. Formisano. 2021. FE vs. DE modeling for the nonlinear dynamics of a historic church in central Italy. Geosciences 11 (5):189. doi:10.3390/geosciences11050189.
  • Ferreira, T. M., R. Maio, and R. Vicente. 2017a. Analysis of the impact of large scale seismic retrofitting strategies through the application of a vulnerability-based approach on traditional masonry buildings. Earthquake Engineering and Engineering Vibration 16 (2):329–48. doi:10.1007/s11803-017-0385-x.
  • Ferreira, T. M., R. Maio, and R. Vicente. 2017b. Seismic vulnerability assessment of the old city centre of Horta, Azores: Calibration and application of a seismic vulnerability index method. Bulletin of Earthquake Engineering 15 (7):2879–99. doi:10.1007/s10518-016-0071-9.
  • Ferreira, T. M., R. Vicente, J. A. R. Mendes da Silva, H. Varum, and A. Costa. 2013. Seismic vulnerability assessment of historical urban centres: Case study of the old city centre in Seixal, Portugal. Bulletin of Earthquake Engineering 11 (5):1753–73. doi:10.1007/s10518-013-9447-2.
  • Ferreira, T. M., R. Vicente, and H. Varum. 2014. Seismic vulnerability assessment of masonry facade walls: Development, application and validation of a new scoring method. Structural Engineering and Mechanics 50 (4):541–61. doi:10.12989/sem.2014.50.4.541.
  • Forcellini, D. 2019. A new methodology to assess indirect losses in bridges subjected to multiple hazards. Innovative Infrastructure Solutions 4 (1). doi:10.1007/s41062-018-0195-7.
  • Giovinazzi, S. 2009. Geotechnical hazard representation for seismic risk analysis. Bulletin of the New Zealand Society for Earthquake Engineering 42 (4):308. doi:10.5459/bnzsee.42.3.221-234.
  • Grünthal, G. 1998. A. Conseil de l’Europe. Luxembourg: European Macroseismic Scale (EMS).
  • Kassem, M. M., F. M. Nazri, and E. N. Farsangi. 2020. The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal 11 (4):849–64. doi:10.1016/j.asej.2020.04.001.
  • Kircher, C. A., R. V. Whitman, and W. T. Holmes. 2006. HAZUS earthquake loss estimation methods. Natural Hazards Review 7 (2):45. doi:10.1061/(ASCE)1527-6988(2006)7:2(45).
  • Lagomarsino, S., S. Cattari, and D. Ottonelli. 2021. The heuristic vulnerability model: Fragility curves for masonry buildings. Bulletin of Earthquake Engineering 19 (8):3129–63. doi:10.1007/s10518-021-01063-7.
  • Lamego, P., P. B. Lourenço, M. L. Sousa, and R. Marques. 2017. Seismic vulnerability and risk analysis of the old building stock at urban scale: Application to a neighbourhood in Lisbon. Bulletin of Earthquake Engineering 15 (7):2901–37. doi:10.1007/s10518-016-0072-8.
  • Lanzo, G., F. Silvestri, A. Costanzo, A. d’Onofrio, L. Martelli, A. Pagliaroli, S. Sica, and A. Simonelli. 2011. Site response studies and seismic microzoning in the middle aterno valley (L’aquila, Central Italy). Bulletin of Earthquake Engineering 9 (5):1417–42. doi:10.1007/s10518-011-9278-y.
  • Lourenço, P. B., and J. A. Roque. 2006. Simplified indexes for the seismic vulnerability of ancient masonry buildings. Construction and Building Materials 20 (4):200–08. doi:10.1016/j.conbuildmat.2005.08.027.
  • Madeira, J., and A. Brum da Silveira. 2007. Tectónica e sismicidade na ilha do Faial e o sismo de 9 de Julho de 1998. Boletim do Núcleo Cultural da Horta 16:61–79.
  • Maio, R., T. M. Ferreira, R. Vicente, and J. Estêvão. 2016. Seismic vulnerability assessment of historical urban centres: Case study of the old city centre of Faro, Portugal. Journal of Risk Research 19 (5):551–80. doi:10.1080/13669877.2014.988285.
  • Malheiro A. (2006). Geological hazards in the Azores archipelago: Volcanic terrain instability and human vulnerability. Journal of Volcanology and Geothermal Research 156 (1–2):158–171. doi:10.1016/j.jvolgeores.2006.03.012
  • Masi, A., L. Chiauzzi, G. Nicodemo, and V. Manfredi. 2020. Correlations between macroseismic intensity estimations and ground motion measures of seismic events. Bulletin of Earthquake Engineering 18 (5):1899–932. doi:10.1007/s10518-019-00782-2.
  • Milani, G., and F. Clementi. 2018. Advanced seismic assessment of four masonry bell towers in Italy after operational modal analysis (OMA) identification. International Journal of Architectural Heritage 12 (6):873–82. doi:10.1080/15583058.2018.1425554.
  • Mosoarca, M., I. Onescu, E. Onescu, and A. Anastasiadis. 2020. Seismic vulnerability assessment methodology for historic masonry buildings in the near-field areas. Engineering Failure Analysis 115:104662. doi:10.1016/j.engfailanal.2020.104662.
  • Rapone, D., G. Brando, E. Spacone, and G. De Matteis. 2018. Seismic vulnerability assessment of historic centers: Description of a predictive method and application to the case study of Scanno (Abruzzi, Italy). International Journal of Architectural Heritage 12 (7–8):1171–95. doi:10.1080/15583058.2018.1503373.
  • Raptakis, D., K. Makra, K. Pitilakis, and N. A. Abrahamson. 2018. Large scale site effect evaluation and modeling for seismic hazard assessment: The case of Thessaloniki (Greece). Soil Dynamics and Earthquake Engineering 112:149–60. doi:10.1016/j.soildyn.2018.05.013.
  • Rosti, A., C. Del Gaudio, M. Rota, P. Ricci, M. Di Ludovico, A. Penna, and G. M. Verderame. 2021. Empirical fragility curves for Italian residential RC buildings. Bulletin of Earthquake Engineering 19 (8):3165–83. doi:10.1007/s10518-020-00971-4.
  • Rota, M., A. Penna, and C. L. Strobbia. 2008. Processing Italian damage data to derive typological fragility curves. Soil Dynamics and Earthquake Engineering 28 (10):933–47. doi:10.1016/j.soildyn.2007.10.010.
  • Salachoris, G. P., G. Standoli, M. Betti, M. R. Pecce, and F. Clementi. 2023. Evolutionary numerical model for cultural heritage structures via genetic algorithms: A case study in central Italy. Bulletin of Earthquake Engineering 1–20. doi:10.1007/s10518-023-01615-z.
  • Salgado-Gálvez, M. A., D. Zuloaga Romero, C. A. Velásquez, M. L. Carreño, O.-D. Cardona, and A. H. Barbat. 2016. Urban seismic risk index for Medellín, Colombia, based on probabilistic loss and casualties estimations. Natural Hazards 80 (3):1995–2021. doi:10.1007/s11069-015-2056-4.
  • Schiavoni, M., E. Giordano, F. Roscini, and F. Clementi. 2023. Numerical assessment of interacting structural units on the seismic damage: A comparative analysis with different modeling approaches. Applied Sciences 13 (2):972. doi:10.3390/app13020972.
  • Spadafora, F., and I. Alberico. 2017. Site effects in Catania city (Sicily, Italy) by 2D synthetic simulations: A large-scale analysis. Journal of Earthquake Engineering 21 (5):693–712. doi:10.1080/13632469.2017.1288937.
  • Toro, G. R., N. A. Abrahamson, and J. F. Schneider. 1997. Model of strong ground motions from earthquakes in central and Eastern North America: Best estimates and uncertainties. Seismological Research Letters 68 (1):41–57. doi:10.1785/gssrl.68.1.41.
  • Vicente, R. 2008. Strategies and methodologies for urban rehabilitation interventions. The vulnerability assessment and risk evaluation of the old city centre of Coimbra. PhD Thesis, University of Aveiro (in Portuguese).
  • Vicente, R., S. Parodi, S. Lagomarsino, H. Varum, and J. A. R. M. Silva. 2011. Seismic vulnerability and risk assessment: Case study of the historic city centre of Coimbra, Portugal. Bulletin of Earthquake Engineering 9 (4):1067–96. doi:10.1007/s10518-010-9233-3.
  • Whitman, R. V., J. W. Reed, and S.-T. Hong. 1974. Earthquake damage probability matrices. In Proceedings of the fifth world conference on earthquake engineering, Vol. 2, 2531–40. Rome, Italy.
  • Zonno, G., G. Musacchio, F. Meroni, C. S. Oliveira, M. A. Ferreira, and F. Neves. 2008. The 9th July 1998 faial earthquake: Comparison of stochastic finite fault damage simulation with surveyed data.
  • Zuccaro, G., and F. Cacace. 2015. Seismic vulnerability assessment based on typological characteristics. The first level procedure “SAVE”. Soil Dynamics and Earthquake Engineering 69:262–69. doi:10.1016/j.soildyn.2014.11.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.