159
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

AR visualizations in laparoscopy: surgeon preferences and depth assessment of vascular anatomy

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 190-198 | Received 14 Jul 2022, Accepted 11 May 2023, Published online: 09 Jun 2023

References

  • Meola A, Cutolo F, Carbone M, et al. Augmented reality in neurosurgery: a systematic review. Neurosurg Rev. 2017;40(4):537–548.
  • Zhu M, Chai G, Zhang Y, et al. Registration strategy using occlusal splint based on augmented reality for mandibular angle oblique split osteotomy. J Craniofac Surg. 2011;22(5):1806–1809.
  • Wagner A, Rasse M, Millesi W, et al. Virtual reality for orthognathic surgery: the augmented reality environment concept. J Oral Maxillofac Surg. 1997;55(5):456–463.
  • Lin L, Shi Y, Tan A, et al. Mandibular angle split osteotomy based on a novel augmented reality navigation using specialized robot-assisted arms–a feasibility study. J Craniomaxillofac Surg. 2016;44(2):215–223.
  • Weber S, Klein M, Hein A, et al. The navigated image viewer – evaluation in maxillofacial surgery. In: Ellis RE, Peters TM, editors. Medical image computing and computer assisted intervention - MICCAI 2003. Berlin, Heidelberg: Springer; 2003. p. 762–769.
  • Blackwell M, Morgan F, DiGioia AMI. Augmented reality and its future in orthopaedics. Clin Orthop Relat Res. 1998;354:111–122.
  • Bernhardt S, Nicolau SA, Soler L, et al. The status of augmented reality in laparoscopic surgery as of 2016. Med Image Anal. 2017;37:66–90.
  • Kruijff E, Swan JE, Feiner S. Perceptual issues in augmented reality revisited. 2010 IEEE International Symposium on Mixed and Augmented Reality, Seoul, Korea (South), 2010, pp. 3-12, doi: 10.1109/ISMAR.2010.5643530.
  • Bogdanova R, Boulanger P, Zheng B. Depth perception of surgeons in minimally invasive surgery. Surg Innov. 2016;23(5):515–524.
  • Fuchs H, Livingston MA, Raskar R, et al. Augmented reality visualization for laparoscopic surgery. In: Wells WM, Colchester A, Delp S, editors. Medical image computing and computer assisted intervention—MICCAI’98. Berlin, Heidelberg: Springer; 1998. p. 934–943.
  • Sielhorst T, Feuerstein M, Navab N. Advanced medical displays: a literature review of augmented reality. J Display Technol. 2008;4(4):451–467.
  • Elhelw M, Nicolaou M, Chung A, et al. A gaze-based study for investigating the perception of visual realism in simulated scenes. ACM Trans Appl Percept. 2008;5(1):1–20.
  • Martin Gomez A, Eck U, Navab N. Visualization techniques for precise alignment in VR: a comparative study. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 2019, pp. 735-741, doi: 10.1109/VR.2019.8798135.
  • Hombeck J, Lichtenberg N, Lawonn K, et al. Heads up a study of assistive visualizations for localisation guidance in virtual reality. In: Maier-Hein K, Deserno TM, Handels H, editors. Bildverarb Für Med 2022. Wiesbaden: Springer Fachmedien; 2022. p. 83–88.
  • Hettig J, Engelhardt S, Hansen C, et al. AR in VR: assessing surgical augmented reality visualizations in a steerable virtual reality environment. Int J Comput Assist Radiol Surg. 2018;13(11):1717–1725.
  • Dilley JWR, Hughes-Hallett A, Pratt PJ, et al. Perfect registration leads to imperfect performance: a randomized trial of multimodal intraoperative image guidance. Ann Surg. 2019;269(2):236–242.
  • Martin-Gomez A, Weiss J, Keller A, et al. The impact of focus and context visualization techniques on depth perception in optical see-through head-mounted displays. IEEE Trans Vis Comput Graph. 2022;28(12):4156–4171.
  • Choi H, Cho B, Masamune K, et al. An effective visualization technique for depth perception in augmented reality-based surgical navigation. Int J Med Robot. 2016;12(1):62–72.
  • Milgram P, Kishino F. A taxonomy of mixed reality visual displays. IEICE Trans Inf Syst. 1994;E77-D(12):1321–1329.
  • Ropinski T, Steinicke F, Hinrichs K, et al. Visually supporting depth perception in angiography imaging. In: Butz A, Fisher B, Krüger A, editors. Smart graph. Berlin, Heidelberg: Springer; 2006. p. 93–104.
  • Gasteiger R, Neugebauer M, Kubisch C, et al. Adapted surface visualization of cerebral aneurysms with embedded blood flow information, 2010. p. 25–32 [cited 2023 Jan 27] Available from: 10.2312/VCBM/VCBM10/025-032.
  • Magnum Engine [Internet]. Magnum Engine. 2022. [cited 2023 Jan 30]. Available from: https://magnum.graphics/.
  • Griwodz C, Gasparini S, Calvet L, et al. AliceVision meshroom: an open-source 3D reconstruction pipeline. In: Proceedings 12th ACM Multimedia Systems Conference. New York (NY): Association for Computing Machinery; 2021. p. 241–247. Available from:
  • Vávra P, Roman J, Zonča P, et al. Recent development of augmented reality in surgery: a review. J Healthc Eng. 2017;2017:4574172.
  • Lerotic M, Chung AJ, Mylonas G, et al. Pq-space based non-photorealistic rendering for augmented reality. Med Image Comput Comput. 2007;10:102–109.
  • Collins T, Pizarro D, Gasparini S, et al. Augmented reality guided laparoscopic surgery of the uterus. IEEE Trans Med Imaging. 2021;40(1):371–380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.